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A B S T R A C T   

Rapid and decentralized quantification of viral load profiles in infected patients is vital for assessing clinical 
severity and tailoring appropriate therapeutic strategies. Although microscopic imaging offers potential for label- 
free and amplification-free quantitative diagnostics, the small size (~100 nm in diameter) and low refractive 
index (n ~1.5) of bioparticles present challenges in achieving accurate estimations, consequently increasing the 
limit of detection (LoD). In this study, we present a novel synergistic biosensing approach, DeepGT, combining 
Gires-Tournois (GT) sensing platforms with deep learning algorithms to enhance nanoscale bioparticle counting 
accuracy. The GT sensing platform serves as a photonic resonator, increasing bioparticle visibility in bright-field 
microscopy and maximizing chromatic contrast. By employing a back-end with a dilated convolutional neural 
network architecture, DeepGT effectively refines artifacts and color deviations, significantly improving particle 
estimation accuracy (MAE ~2.37 across 1596 images) compared to rule-based algorithms (MAE ~ 13.47). 
Notably, the enhanced accuracy in detecting invisible particles (e.g., two- or three-particles) enables an LoD of 
138 pg ml− 1, facilitating a dynamic linear correlation at low viral concentration ranges within the clinical 
spectrum of infection, from asymptomatic to severe cases. Leveraging transfer learning, DeepGT, which relies on 
a chromatometry-based strategy instead of a spatial resolution approach, exhibits exceptional precision when 
analyzing particles of diverse dimensions smaller than the microscopy system’s minimum diffraction limit in 
visible light (< 258 nm). The DeepGT approach holds promise for early screening and triage of emerging viruses, 
reducing costs and time requirements in diagnostics.   

Introduction 

Ubiquitous and rapid diagnostic tests can identify new infection 
cases on-site and facilitate the immediate treatment and/or isolation of 
infected individuals, to prevent the further spread of viruses [1–3]. 
Disease outbreaks such as the COVID-19 pandemic have emphasized the 
deficiencies of centralized laboratory diagnostic systems and the lengthy 

periods of time they require to process samples and provide results [3,4]. 
Furthermore, prolonged qualitative diagnosis has led to either 
under-medication/treatment or conversely over-medication/isolation of 
infected patients [1,5]. Recent clinical studies have suggested a strong 
association between viral load and clinical severity [2,6–11], which 
underlines viral load as a potentially highly predictive risk factor for 
severe viral infections and a crucial marker for designing optimal 
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clinical interventions. Quantitative laboratory-based testing [e.g., 
quantitative polymerase chain reaction (qPCR) [12,13] is labor inten-
sive, requiring specialized facilities with skilled staff and specific in-
frastructures for various tasks (e.g., sample processing, nucleic acid 
extraction, thermocycling, and data analysis). Moreover, the complexity 
of sample preparation, including fluorophore labeling and/or amplifi-
cation, can significantly impact both the turnaround time and accuracy 
of testing, as it has the potential to amplify unintended nucleic acid 
sequences [14,15]. Alternatively, the development of automated rap-
id/quantitative diagnostic technologies based on intuitive/inexpensive 
test kits offers opportunities to diagnose patients immediately at the 
point-of-care and provide appropriate treatment options for clinical 
severity commensurate with quantitative loads [8,10,11]. 

Viruses are typically smaller than the diffraction limit (< 258 nm; see 
Methods for a detailed formula) of a typical bright-field microscopy 
system and have a low refractive index (n ~1.5) [16,17], inducing weak 
light-matter interactions. Accurately quantifying viruses smaller than 
the wavelength of visible rays (400–800 nm) presents a significant 
challenge due to the ambiguous and blurred images obtained from a 
typical upright microscope, further complicated by the similarity in 
refractive index between biological nanoparticles and the sliding glasses 
in a conventional microscope. Various imaging modalities have been 
developed to achieve high resolution and accurate quantitation of bio-
logical tissues; these include confocal microscopy [18], two-photon 
fluorescence [19], second harmonic generation [20], Raman spectros-
copy [21], Fourier-transform microscopy [22], and electron microscopy 
[23]. Although these techniques have been successful in advancing 
biomedical research, their use is limited owing to the requirement for 
sophisticated equipment and professional expertise. Recently, advanced 
nanophotonic technologies have been developed using plasmonic-based 
nanostructures, primarily for microscale cell-imaging applications (e.g., 
colorimetric histology [24,25] and ptychographic phase microscopy 
[26]). Nanophotonic biosensors based on surface-enhanced Raman 
scattering [27] and surface plasmon resonance [28], have been studied 
for targeting nanoparticles, but still suffer from noise, reproducibility, 
uniformity, and rapid imaging challenges [29,30]. To alleviate these 
drawbacks and to provide a holistic approach to complex data [31], 
machine learning has been applied to conventional nanophotonic bio-
sensors. The remarkable ability of artificial intelligence models based on 
deep convolutional neural networks (CNNs) to process vast amounts of 
data and extract subtle information, sometimes unavailable to human 
experts, has played a pivotal role in many fields. In particular, computer 
vision [32,33] using CNNs has demonstrated superior object categori-
zation skills similar to human vision [34] and has been successfully 
applied to various biomedical applications (e.g., protein structure pre-
diction [35] and cell counting [36–38]). 

In our previous studies [39,40], the tunable trilayered 
Gires-Tournois (GT) immunosensor, which is a nanophotonic resonator, 
was designed to interact with minuscule biological analytes and to 
produce colorful micrographs based on chromatometry for specific an-
alyte loads through a bright-field microscope without any additional 
accessories. Despite the advantage of not requiring nanopatterning or 
synthesis, several visual artifacts emerged during the process (e.g., 
surface defects, impurities, and salts), resulting in inherent issues such as 
non-uniformity and non-reproducibility. Therefore, conventional chro-
matic analysis was not able to reliably distinguish between normal 
bioparticles and visual artifacts (displaying a similar color to the normal 
bioparticles), thereby leading to a limit of quantification that was not 
consistently close to that of qPCR. Even though supervised deep learning 
(DL) has the potential to exceed conventional approaches and provides 
effective performance, the need for well-curated and ground 
truth-tagged training datasets remains a hurdle for conventional labs in 
terms of cost, time, and labor [31,41]. 

Here, we present an intuitive biosensing framework, named DeepGT, 
that is highly efficient in quantifying nanoscale bioparticles using 
nanophotonics and DL without the need for any sample preparation or 

parameter fitting. The GT biosensors composed of trilayered thin films 
and a biofunctionalized surface, designed to target specific analytes are 
used to directly facilitate dynamic colorimetric sensing. The function-
ality of the GT biosensor was successfully verified through the utilization 
of synthesized virus-like particles. These particles were created by 
combining SARS-CoV-2 antigens with SiO2 nanospheres, effectively 
simulating the binding mechanism between the virus and host cells. 
After detecting bioparticles mimicking the SARS-CoV-2 using the GT 
biosensors functionalized with SARS-CoV-2 antibodies, we obtained 
images of diverse structures of nanoparticle (NP) clusters mounted on 
the GT biosensors through a conventional bright-field optical micro-
scope (OM) and scanning electron microscope (SEM), and subsequently 
annotated 2336 image pairs (1596 image pairs for training main model 
and the others for hard negative sampling and transfer learning). 
Considering the limited quantity of training data for Big Data applica-
tions, we employed data augmentation and five-fold cross-validation to 
address the training set’s scarcity and boost the performance of CNNs. 
The optimized DeepGT, trained with ground truth density maps derived 
from SEM images and supplemented with hard negative samples con-
taining diverse visual artifacts, was applied to infer the effective count of 
NPs in OM images. DeepGT filtered out irrelevant information and 
extracted only the desired data, leading to a comparable detection limit 
of 138 pg ml− 1 to existing diagnostics [6] and ensuring a dynamic linear 
correlation at low viral concentration range from ‘asymptomatic’ to 
‘severe’ [7,42,43]. Furthermore, we utilized the pre-trained DeepGT to 
measure analytes across a broad size spectrum, encompassing zoonotic 
animal viruses, by implementing transfer learning, which resulted in 
remarkable transferability with limited datasets [44,45]. 

Results 

Visualization and quantification of nanoscale bioparticles using 
nanophotonics and DL 

Fig. 1 illustrates the visualization and quantification of nanoscale 
bioparticles using nanophotonics and DL. We employed a planar pho-
tonic resonator in a trilayered thin-film configuration without sophis-
ticated geometries [39,40]. This configuration can produce a strong 
resonance without requiring nanopatterning, and it can be readily 
manufactured on a large scale (Fig. 1a). The proposed thin-film structure 
features a porous (Pr) lossy layer on a metal substrate; this acts as a GT 
resonator with a strong/sensitive resonance, providing distinct detec-
tion and design flexibility for diverse analytes. For the optical modeling 
of the GT resonator, we used the minima reflectance solver. This was 
based on impedance matching and finite-difference time-domain 
(FDTD) calculations. This was done for a near-unity absorption condi-
tion at a visible wavelength of 528 nm in the range of chromatic 
sensitivity (Supplementary Fig. S1). The refractive indices of the oxide 
and lossy layers were considered based on the refractive index of the 
target analyte (Fig. 1b and Supplementary Fig. S2). After solving for the 
minima reflectance conditions, the fabrication parameters were derived 
by considering realistic modeling conditions from the various solutions 
for unity absorption. Taking the optimal parameters (toxide, tlossy, and Pr), 
we fabricated oxide and lossy layers using plasma-enhanced chemical 
vapor deposition (PECVD) and electron-beam physical vapor deposition 
(EBPVD), respectively (see Methods for a detailed description; Fig. 1c 
and Supplementary Fig. S3). The optimized resonator was then func-
tionalized with an antibody that selectively reacted to a specific antigen 
to utilize as biosensors (see Methods for a detailed description; Sup-
plementary Fig. S4). In the biosensing procedure, NP agglomerations are 
induced by the hydrodynamic phenomenon of evaporation, specifically 
through Marangoni flow, which is influenced by temperature and hu-
midity [46]. We subjected the surface to plasma treatment for achieving 
hydrophilicity to ensure maximum evaporation and consistent drying 
sequences regardless of temperature and humidity conditions. Sequen-
tially, we carefully dispensed a minimal volume of solution (300 nl) 
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containing NPs onto the biofunctionalized surface of the GT biosensor 
[47]. The bioparticles adsorbed on the surface of the fabricated structure 
formed clusters (within the desired concentration range) which were 
chromatically distinguishable in OM images. Optical simulation results 
revealed a strong linear correlation between chromaticity and particle 
distribution based on the gap distance between particles (Dgap). This was 
supported by the comparison of bright-field micrographs and their 
corresponding scanning electron microscopy (SEM) images (Fig. 1d and 
Supplementary Fig. S5). We could use this for quantitative analysis. 

For the experimental dataset, multiple images were acquired from 

iteratively fabricated samples using a camera-equipped microscope; 
these were then matched with the corresponding SEM images (Fig. 1e 
and Supplementary Figs. S6 and S7. All data are available on the Fig-
share repository at https://doi.org/10.6084/m9.figshare.c.6468460. 
v1). For the DL process, ground truths were constructed via cluster- 
matching-based annotation of the SEM images in the acquired dataset, 
assisted by Gaussian filtering (Fig. 1f). Prior to the DL process, the 
training and validation sets were grouped via random data-splitting, for 
efficient dataset utilization of the OM images and ground truths. For 
chromatic analysis, we utilized a CNN that shows strong performance in 
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Fig. 1. Quantitative bright-field imaging of nanoscale bioparticles based on multilayered thin-film via deep learning. (a) Multilayered thin-film resonator, to produce 
a strong resonance between the bioparticles of various analytes. (b) Optical modeling for the oxide layer and lossy layer, to achieve near-unity absorption and derive 
the fabrication parameters for realistic modeling; n, refractive index; k, extinction coefficient; toxide, thickness of oxide material; tlossy, thickness of lossy layer; Pr, 
porosity of lossy media. (c) Fabrication using PECVD and EBPVD (depending on fabrication parameters) followed by biofunctionalization to produce an immuno-
sensor. PECVD, plasma enhanced chemical vapor deposition; EBPVD, electron-beam physical vapor deposition. (d) Strong linear correlation between chromaticity 
and ground truth number of nanosized bioparticles in OM and SEM images; Dgap, the gap distance between particles; ΔE, color difference; Nparticle, effective number of 
bioparticles; OM, optical microscopy; SEM, scanning electron microscopy. (e) Iterative sample fabrication for obtaining an experimental dataset of 1596 pairs of OM 
and SEM images. (f) Annotating the SEM images and blurring via the Gaussian filter for ground truthing; NPs, nanoparticles. (g) OM images and ground truth density 
maps; these were split (to perform five-fold cross-validation of the CNN) and then their performances were averaged over to establish a robust main DL model; CNN, 
convolutional neural network; DL, deep learning. (h) Illustrations of the rule-based algorithm according to chromaticity classification and DL-based CNN algorithm 
for analyzing OM images. (i) DeepGT showing a lower MAE than the rule-based one. (j) Artifacts, which are counted in the rule-based analysis but filtered in DeepGT. 
(k) Clinical severity, which can be estimated from the analysis algorithm for viral infection within the minimum linear correlation range. (l) Transfer learning for 
various particles with different diameters; dia, diameter. Scale bar: 1 µm. The raw SEM and OM images dataset and the annotations are available on the Figshare 
repository at https://doi.org/10.6084/m9.figshare.c.6468460.v1. 
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visual image analysis as a feature extractor of color images, and per-
formed five-fold cross-validation to improve the accuracy of analysis, 
resulting in the establishment of DeepGT (Fig. 1g). 

After learning, we evaluated the accuracy improvement by 
comparing DeepGT against a conventional rule-based algorithm [39] 
that classified a limited range of chromaticity values (Fig. 1h). The 
particle estimation results show that DeepGT yielded five-fold lower 
value compared to the rule-based algorithm in terms of mean absolute 
error (MAE), because optimized neural networks can refine the irrele-
vant information (Fig. 1i). Moreover, DeepGT can automatically refine 

various visual artifacts that might adversely affect evaluation [48]. In 
contrast, rule-based algorithms do not filter out these artifacts. Instead, 
they count them as analytes (Fig. 1j). A dynamic linear correlation for 
bioparticle quantification in a lower concentration range facilitates 
clinical spectrum diagnosis via detailed clinical severity estimation 
grades for viral infection (Fig. 1k). Unlike rule-based algorithms, 
DeepGT can easily build evaluation models and achieve low MAEs for 
particles of different sizes, via transfer learning (Fig. 1l). 
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Dataset construction and effective number of particle estimations using 
CNN 

Fig. 2a shows the image processing steps (including grayscale con-
version, filtering, and contrast enhancement) applied to the raw SEM 
images for labeling via annotator and digitization of the captured NP 
positions (see also Supplementary Fig. S8 for the detailed sequence). The 
overlaid particles and visual artifacts were accurately annotated to 
construct the well-curated dataset, thereby training a robust DL model. 
By employing a semi-automatic annotator based on the circle Hough 
Transform, we minimized the human error and edited the NP labels 
using five tunable parameters: diameter, eccentricity, and three toler-
ancing conditions of particles (Supplementary Video S1). The discretely 
dotted annotations were successively spread by a Gaussian filter to 
preserve the continuous spatial distribution and to construct the ground 
truth density map (see Methods for details; Fig. 2b). A comparative 
analysis was performed to determine the optimal spreading filter from 
among six candidates (Supplementary Fig. S9). Consequently, the 
Gaussian spread function, in which profile approximates the Airy disk 
[49] as the pattern of far-field diffraction, was selected for transforming 
the ground truth density map. The optimal standard deviation of the 
Gaussian filter was determined to be 1 (from a range of 0.1–5) to closely 
match the cluster area of the OM image (Supplementary Fig. S10). Hard 
negative data by visual artifacts (i.e., a ground truth value of zero) were 
ignored in annotation, to facilitate the precise auto-filtering process. The 
clusters adsorbed onto the GT biosensor were also classified according to 
three criteria: the number of particles, clusters, and layers (Supple-
mentary Fig. S11). 

To enhance the accuracy of particle count estimation for the OM 
images, we adopted five-fold cross-validation [50,51], which reduces 
overfitting and provides more accurate performance estimates for 
limited datasets. The overall average performances of the five DL models 
were evaluated after training using 80% of the dataset and validated 
using the remaining 20% via five-fold cross-validation (Fig. 2c). To 
adopt the most suitable model for maximizing prediction performance, 
we compared six neural networks widely used for crowd counting: 
CSRNet [52], VGG-16 [53], MCNN [54], and ResNet-50 [55]. Among 
these, CSRNet achieved the lowest MAE in prediction (Fig. 2d and 
Supplementary Fig. S12). The efficient architecture of CSRNet, with ten 
times fewer parameters than VGG-16 as the second-lowest MAE, re-
quires an assay time of ~3 ms (see Methods for detailed training 
equipment). Considering the difficulties associated with generating 
large-scale ground truth datasets for DeepGT, several data augmentation 
techniques [56] (i.e., jittering, flipping, and rotation) were conducted to 
enrich the existing dataset (Supplementary Fig. S13). Rotation and 
flipping were randomly applied to the OM images allowing the DL model 
to learn diverse cluster shapes, and jittering was used to modify the 
brightness, saturation, and color contrast of pixel information within an 
appropriate range (for an ablation study for data augmentation, see 
Supplementary Table S1). These three methods reduced the MAEs to 
2.78, 2.78, and 2.64, respectively, compared to the initial value of 2.86, 
and applying all three of them simultaneously resulted in the lowest 
value of 2.37 (Fig. 2e). The training loss (TL) and validation loss (VL) 
during the five-fold cross-validation process for CSRNet showed that 
neither overfitting nor underfitting occurred (Fig. 2f and Supplementary 
Fig. S14). 

Fig. 2g illustrates the architecture of CSRNet, which consists of a 
front-end and a back-end for generating density maps, in contrast to 
other CNN-based density estimations [57–59]. The front-end consists of 
convolutional layers from VGG-16, which possesses strong transfer 
learning capabilities and can be adapted to facilitate integration with the 
back-end. The front-end, which includes three max-pooling layers, 
produces an output density map of 7 × 5 pixels, which was reduced to 
1/8 of the original input OM image size (61 × 41 pixels) (Supplementary 
Fig. S15). The back-end of the CSRNet uses dilated convolutional layers 
with dilation rates of two to aggregate the multiscale contextual 

information (for an ablation study for dilation rate, see Supplementary 
Table S2). Dilated convolution exploits sparse kernels to enlarge the 
receptive field of a network without increasing the number of additional 
layers or parameters. By adding gaps between the pixels in the con-
volutional kernel, and effectively skipping several pixels, the receptive 
field can be expanded beyond the size of the kernel, allowing the 
network to capture a more extensive context without increasing the 
number of parameters or the computational complexity. Because 
nanosized bioparticle images have highly ambiguous and complex 
configurations, the dilated convolution filter preserves the contextual 
information of the NPs. Based on this architecture, we finally achieved 
an MAE of 2.3669 by comparing the particle count obtained from the 
estimated density map with the ground truth particle count for 1596 
images (Fig. 2h). Our empirical analysis suggests that adding more 
convolutional and pooling layers can decrease the output size and 
hinder the generation of high-quality density maps. Thus, our archi-
tectural setup is optimal for learning nanoscale bioparticles from limited 
data, while also preventing overfitting and underfitting. The coefficient 
of determination (R2) of 0.9878 indicates that the trained DeepGT can 
accurately predict the number of particles without any bias. 

Linear quantification for low virus concentration using refined information 

Evaluating viral concentration using a single viral cluster presents 
challenges in practical biosensing scenarios. To overcome this, we 
decided to define a wider sensing area of 1 mm × 1 mm in size and 
aggregate the particle count across the entire area. After the biosensing 
process, the defined sensing area (filled with NPs in proportion to the 
concentration of the viral solution) was raster-scanned with the OM to 
construct a high-magnified stitched image for DeepGT quantification 
(Supplementary Fig. S16). Diverse structures of NP agglomerations 
(including imperceptible particles and complex forms), along with some 
inevitable visual artifacts, were produced during the entire process 
including the vapor deposition and biosensing. To achieve precise 
quantitative biosensing, the elimination of irrelevant information from 
the raw OM images and real-time counting of refined information are 
necessary. Due to the relatively insignificant colors of NP clusters con-
sisting of two or three particles in the OM images, the rule-based algo-
rithm based on chromatic analysis identifies these cases as imperceptible 
particles. In contrast, DeepGT accurately extracts features of these 
imperceptible particles and infers their presence with high accuracy 
(Fig. 3a). While the rule-based algorithm was unable to detect the two- 
particle clusters at all, DeepGT was able to recognize their existence 
using trained features (Fig. 3b). For the three-particle clusters, the rule- 
based algorithm provided an estimate with a mean value of 0.48 and a 
standard deviation (SD) of 1.35; however, DeepGT accurately inferred 
with a mean value of 3.58 and an SD of 0.57. Fig. 3c presents scatter 
plots for comparing DeepGT and rule-based analysis of artifact- 
encompassed images. Using the rule-based algorithm, clusters 
composed of less than twenty NPs were undercounted (gray crosses 
beneath the diagonal line); in contrast, dense scattered red dots repre-
senting DeepGT near the diagonal line indicated accurate and unbiased 
inference. 

Notably, DeepGT extracts the features of NP clusters in the OM im-
ages without relying on seeming color, which can be confusing for the 
rule-based algorithm (see Supplementary Table S3 comparing DeepGT 
with the rule-based approach). The rule-based algorithm overcounts 
most artifact-encompassed images due to the visual artifacts (displaying 
a similar hue to the NP clusters) (Fig. 3d). DeepGT was trained with 139 
additional hard negative images (with a ground truth value of zero), 
comprising 50, 50, and 39 images of large defects, small defects, and 
impurities, respectively, to mitigate the risk of misreading (Supple-
mentary Fig. S17). The automated identification and filtering of artifacts 
resulted in a decrease in the estimated number of NPs in an image 
containing an artifact to 11.7, which is approximately the ground truth 
value of 15. In addition, multi-layer regions (i.e., those comprising more 
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than three layers of NPs; displaying a similar hue to the background) in 
the multi-layer clusters also misinform the chromatic classifier of the 
rule-based algorithm, resulting in a significant undercount (Fig. 3e). 
However, the automatically generated DL model in DeepGT exactly in-
fers the existence of multi-layer NPs by featuring contexts, resulting in 
an estimation of 159.4, which is approximately the ground truth value of 
158. 

The refinement of artifacts and accurate quantification of imper-
ceptible particles and complex forms significantly reduce the MAEs of 
the overall data indices across the 1596 dataset, especially in multi-layer 
clusters, which decreased from 30.0 to 5.56 (Fig. 3f). Thus, DeepGT 
demonstrates a more accurate and robust performance without notice-
able outliers. Fig. 3g shows a linear correlation between the viral 

concentration and sensing particle count produced via DeepGT and rule- 
based analysis. Even at low virus concentrations, DeepGT achieved a 
limit of detection (LoD) of 138 pg ml− 1, which fell between those of the 
qPCR (13.8 pg ml− 1) and the lateral flow immunoassays (LFIAs) 
(13,800 pg ml− 1) used in rapid antigen tests. In contrast, rule-based 
analysis (relying on a simple classifier) was unable to identify visual 
artifacts, erroneously perceiving these as clusters and resulting in sig-
nificant deviations and difficulties in defining the link to the viral load. 
Auto-filtering of visual artifacts facilitates a dynamic linear correlation 
at low viral concentration range in the clinical spectra of infection (from 
‘asymptomatic’ to ‘severe’), whereas the rule-based algorithm can only 
ensure spectra above ‘moderate’. According to the guidelines of the 
World Health Organization [60,61], the use of antiviral medications (e. 
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g., nirmatrelvir and ritonavir) is strongly recommended for moderately 
and mildly SARS-CoV-2-infected patients, whereas the use of proin-
flammatory mediators (e.g., IL-6 receptor blockers) is recommended for 
patients with the moderate or severe levels of infection. Asymptomatic 
patients with no clinical symptoms or abnormal chest imaging findings 
are strongly advised to wear face masks [62]. Simple triage and rapid 
interventions can be facilitated based on the objective quantification of 
viral loads in subjects’ clinical samples, rather than relying on subjective 
symptoms [10,11,63,64]; this enables its application in point-of-care 
testing and population-level screening diagnosis to prevent the trans-
mission of pandemic viruses [15]. 

Transfer learning for the quantification of bioparticles with diverse sizes 

Most common viruses have diameters in the range of 20–300 nm and 
a refractive index similar to that of SiO2 (~1.5) [16,17,44,45]. Devel-
oping new DL models that are virus species-specific, for analyzing vi-
ruses of varying sizes requires a large amount of labeled data, which can 
be challenging and time-consuming to obtain. However, transfer 
learning—a machine learning technique that repurposes or adapts 
pre-trained models for different tasks—can significantly reduce the cost 
and time required to develop new models, by implementing the 
knowledge gained from solving related problems [65–67]. This 
approach is particularly helpful when data for new tasks are limited, or 
training a new model from scratch is computationally expensive or 
time-consuming. By using only a few additional datasets, the convolu-
tional layers of the CSRNet model, pre-trained using 100-nm-diameter 
particles, were fine-tuned to adapt for the quantification of 

virion-mimicking SiO2 nanoparticles with diameters of 50, 200, and 
300 nm, covering many sizes of bioparticles (Fig. 4a). Despite the 
availability of only a small amount of data, when provided with 120, 
251, and 231 images (Supplementary Fig. S18), the transferred models 
achieved MAEs of 3.59, 2.24, and 2.71, respectively (Fig. 4b). DeepGT 
demonstrated a modest performance for the 50-nm-diameter NPs, which 
induce weak light-matter interaction due to their minuscule size. For the 
200-nm-diameter NPs, whose size is closer to those mostly trained in the 
CNN, the MAE was the lowest. During each experiment, the images of 
the dataset were randomly partitioned into training and testing subsets, 
and a random item of the training subset (ranging from 20% to 100%) 
was selected to evaluate the transferability. The relationship between 
the size of the training dataset and the MAE suggests that increasing the 
size of the training dataset results in improved accuracy and greater 
robustness of the transferred model. 

Fig. 4c demonstrates the transferable coverage of the fine-tuned 
model by plotting the sizes of real viruses [68] on a line. Noteworthy, 
DeepGT is capable of fully quantifying viruses with diameters of 
50–300 nm, regardless of the nucleic acid core or the Baltimore classi-
fication (see Supplementary Table S4 for details). This size-dependent 
flexible immunosensing system can be utilized with any antibody suit-
able for the virus of interest, potentially enabling quick and effective 
detection of diverse viruses such as Ebola, Zika, and monkeypox viruses 
[44,45]. The selective immunocapture and quantification of the NPs in 
the mixture are facilitated by modifying the immobilized antibody on 
the GT resonator to target specific analytes (Supplementary Fig. S19). 
Diverse types of particles can be simultaneously quantified using mul-
tiple sensing areas, each with immobilized antibodies that are specific to 

50-nm-dia
(N = 120)

200-nm-dia
(N = 251)

300-nm-dia
(N = 231)

b

conv

max-pooling

conv-2

conv

Pre-trained CNN

conv

max-pooling

conv-2

conv

Fine-tuned CNN

Model
transfer

Source dataset Target dataseta

c

100-nm-dia
(N = 1596) Es

tim
at

io
n 

(#
)

N/5 = 24
MAE = 3.5890
R2 = 0.8805

0

100

0 100

50-nm-dia

50

50
Ground truth (#)

Es
tim

at
io

n 
(#

)

N/5 = 51
MAE = 2.2422
R2 = 0.9610

0

100

0 100

200-nm-dia

50

50
Ground truth (#)

Es
tim

at
io

n 
(#

)

N/5 = 46
MAE = 2.7053
R2 = 0.9818

0

100

0 100

300-nm-dia

50

50
Ground truth (#)

Diameter (nm)

Transfer Coverage

2000 10050 150

Baltimore classification
Group I
Group II
Group III

Group IV
Group V
Group VI

M
AE

 (#
)

Training dataset (%)
10020 40 80

6

2

4

60

50 nm
200 nm
300 nm

Fig. 4. Transfer learning for different size analytes using fine-tuned CNN. (a) Pre-trained CNN is fine-tuned for transfer learning using the target dataset of nano-
particles with diameters of 50, 200, and 300 nm. (b) Scatter plots of ground truth with respect to estimation and transferability of each size of nanoparticles. (c) 
Expandability of the fine-tuned CNN to other viruses; conv-2: convolution with a dilation rate of two. All scale bars: 1 µm (unless otherwise labeled). The raw SEM and 
OM images dataset and the annotations are available on the Figshare repository at https://doi.org/10.6084/m9.figshare.c.6468460.v1. 

J. Kang et al.                                                                                                                                                                                                                                    



Nano Today 52 (2023) 101968

8

their target analytes. Furthermore, the value of this technology is also 
intimately intertwined with its capability to address various mutations 
of a particular virus species [69], which have posed a challenge for 
conventional testing methods in the recent context of the SARS-CoV-2 
pandemic. 

Discussion and conclusion 

The COVID-19 pandemic overwhelmed our preparedness to screen 
and diagnose individuals infected with a novel viral pathogen featuring 
high transmissibility and unanticipated virulence. This has highlighted 
the importance of decentralized, rapid, accurate, and intuitive diag-
nostic tests. The gold standard method (i.e., qPCR) provides a definitive 
result via a long and complex process. However, the qPCR is not widely 
available in developing countries due to costs and the level of expertise 
required. In addition, the rapid antigen test kits (e.g., LFIA) faced the 
drawbacks of restricted sensitivity, low accuracy, and limited quantifi-
cation when compared to laboratory-based benchtop diagnostics, 
resulting in a high rate of false negatives. The stratification of patients 
based on viral load is a crucial step in implementing personalized 
therapies. The aforementioned tests are inefficient for this purpose. 
Recent research has led to signal-based breakthroughs through the use 
of field-effect transistor-based biosensing devices [70], plasmonically 
enhanced LFIA [71], CRSIPER-Cas12-based LFIA [72], and others 
[73–79] (Table 1). 

In this study, we propose an image-driven quantitative viral sensing 
framework merging the advantages of GT biosensors and CNNs, which 
we have named DeepGT. The GT biosensor exploits slow-light effects 
which result in large color differences between the nanoscale bio-
particles and the pristine GT surface. Significantly, the nanosized bio-
particles can be detected via a straightforward antibody–antigen 
reaction, without the need for labeling or amplification. The bright-field 
micrographs of the GT biosensor facilitate facile immunoassays and 
intuitive recognition through vision. DeepGT, has a CNN that has been 
carefully trained using large datasets of experimental SEM and OM 
images and can accurately infer the quantity of NPs on the biosensor in 
less than a second. Moreover, the proposed use of auto-filtering and 
transfer learning facilitates the accurate quantification of various nano- 
analytes sized below the microscopy system’s minimum diffraction limit 
in visible light (< 258 nm). Notably, even with limited data availability, 
the framework can be adjusted to detect bioparticles of different sizes 
(given that most ‘knowledge’ is transferred). Such flexibility results in 
the tremendous potential for testing various nanosized viral pathogens, 
in the absence of other knowledge other than, their size (and a target 
protein required for the functionalization of the GT biosensor). DeepGT 

classifies the bioparticle counts in the concentration of SARS-CoV-2 
severity spectrum from ‘asymptomatic’ to ‘severe’, thereby facilitating 
timely and appropriate clinical intervention. For viruses that undergo 
physical and/or biological changes, additional training datasets are 
required to enhance the accuracy of quantification. Further, the well- 
curated datasets introduced in this study can facilitate the data-driven 
inverse design for nanophotonics and overcome existing challenges 
such as cluster identification and single-particle reconstruction faster 
than the conventional method [31,41,80]. DeepGT can be further 
developed for a more robust quantitation optimized for hazardous bio-
nanoparticles (e.g., emerging pandemic viruses and bacteria) by 
creating an image repository and storing rich experimental datasets, 
such as various microscopy techniques [81,82]. 

Overall, given its sensitivity performance (comparable to the qPCR 
test) and its affordability (potential price comparable to the LFIA), we 
believe that DeepGT will serve as the foundation for the next-generation 
viral diagnostic tools and as a valuable resource for other major medical 
fields. For example, in cancer diagnosis and treatment, where prompt 
decision-making is crucial for better patient outcomes, DeepGT can be a 
potential alternative for detecting cancer biomarkers or immunological 
responses at the point of care. Additionally, in the realm of drug de-
livery, the ability to quantify and identify the distribution of nano-
particles provides unbiased information in cancer therapy and facilitates 
a comprehensive interpretation of research finding [83,84]. We antici-
pate that using DeepGT for screening and diagnosis in preparation for 
viruses (which can surpass diffraction limitations) that may emerge in 
the future, will save time and resources in clinical applications [15,85]. 
Moreover, DeepGT-generated output datasets may prove valuable in 
deciphering intricate nanophotonics through a data-driven inverse 
design methodology, eliminating the need for numerical light-matter 
interaction modeling or intuition-based iterative parameter explora-
tion [31,41,80]. Beyond nanoscale analytes, we further envision that the 
GTIP holds immense potential for multi-scale facile visual-
ization/quantification involving various cells and tissues. 

Materials and methods 

Fabrication of GT resonator 

For fabrication, a 100-nm-thick gold thin film (Platypus Technolo-
gies, USA) was sonicated, cleaned (sequentially with acetone, iso-
propanol, and deionized (DI) water), and dried using a nitrogen gun. A 
60-nm-thick Ge thin film was deposited on an Au reflector via electron 
beam evaporation (KVE-E2000, Korea Vacuum Tech, Korea) under high 
vacuum conditions (~10− 6 Torr) at a rate of ~1 Å/s. To modulate the 

Table 1 
Comparison of biosensing techniques for SARS-CoV-2 detection.  

Technique Target analyte Materials Equipment Detection limit Time Ref. 

RT-PCR SARS-CoV-2 RNA DNA Primer, Fluorescent dye Thermocycler, Fluorescent reader 10 copies μl− 1 3 h [70] 
RT-LAMP SARS-CoV-2 RNA LAMP primer, Fluorescent dye Heat bath, Fluorescent reader 50 copies μl− 1 1 h [71] 
Colorimetric RT-LAMP SARS-CoV-2 RNA LAMP primer, Fluorescent dye Heat bath, Fluorescent reader ~103 copies μl− 1 30 m [72] 
CRISPR-Cas12 based LFIA E gene and N gene LAMP primer, Cas12, LFIA strip Heat bath, Fluorescent reader 10 copies μl− 1 40 m [69] 
Plasmonically enhanced 

LFIA 
N gene LFIA strip, Fluorescent dye Fluorescent reader 212 pg ml− 1 20 m [68] 

Graphene FET Spike protein Graphene-based FET Parameter analyzer 242 copies ml− 1 > 1 m [67] 
SPR Ig G and Ig M Biofunctionalized Au sensor SPR equipment 0.5 μg ml− 1 10 m [73] 
LSPR imaging Pseudovirus Nanocup array, labeled AuNPs Fluorescence microscope 125 vp ml− 1 12 m [74] 
Thermotropic liquid crystal SARS-CoV-2 RNA Cationic surfactant, ssDNA 

probe 
Polarized light microscope 30 fM 20 m [75] 

Colorimetric dark-field N gene ASO cappedAuNPs Hyperspectral-enhanced dark-field 
microscope 

180 pg μl− 1 30 m [76] 

DeepGT NPs w/ spike protein GT biosensor Optical microscope w/o any accessory 138 pg ml− 1 5 m This 
work 

Abbreviations: Ref, reference; RT-PCR, reverse transcription polymerase chain reaction; RT-LAMP, reverse transcription loop-mediated isothermal amplification; LFIA, 
Lateral flow immunoassay; FET, field-effect transistor; SPR, Surface plasmon resonance; Ig, Immunoglobulin; LSPR, Localized Surface plasmon resonance; AuNP, Gold 
nanoparticle; ASO, Antisense oligonucleotide; GT, Gires-Tournois; w/o, without. 
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refractive index of the lossy medium, a Ge layer was deposited via 
glancing angle deposition after being embedded in a customized tilted 
sample holder at a 70◦ deposition angle. This process was repeated 
upside down to form a flat surface at half the target thickness (see 
Supplementary Fig. S3 for details). Next, a 180-nm-thick SiO2 passiv-
ation layer was deposited using plasma-enhanced chemical vapor 
deposition (PECVD; System 100, Oxford, USA) with radiofrequency (RF) 
plasma (170 sccm of SiN4 gas, 710 sccm of N2O gas, 20 W, 0.1 Torr, 90 s, 
150 ◦C). To define the sensing area, the top SiO2 layer was etched to a 
depth of 100 nm via reactive-ion etching (RIE; PLASMALAB 80 PLUS, 
Oxford, USA) with a contact-type shadow mask and RF plasma (50 sccm 
of CF4 gas, 75 W, 50 mTorr, 3 min). The sensing area was patterned in a 
square array with a constant spacing between adjacent areas. 

Biofunctionalization of GT biosensor 

A 5% polyethylene glycol (PEG, Sigma-Aldrich, USA, no. 295906) 
solution (w/w in 95% tetrahydrofuran) was spin-coated onto the GT 
resonator at 4000 rpm for 30 s. Subsequently, samples were dried at 
80 ◦C for 7 min, rinsed in pre-made phosphate-buffered saline (PBS; 
Biosesang Co., Ltd., Korea) for 45 s and Milli-Q water for 15 s, and 
annealed at 120 ◦C for 1 min. The PEG-coated surface was immobilized 
by immersion in 100 μg ml− 1 IgG (Anti-Spike-RBD-hIgG1, InvivoGen, 
USA) for 10 min at room temperature (27 ◦C). To prevent non-specific 
interactions, this PEG-IgG surface was incubated with 1% bovine 
serum albumin (BSA) solution (20 mg ml− 1) (Biosesang Co., Ltd., Korea) 
at room temperature for 20 min. The GT biosensor was separated from 
the chip array wafer using a diamond cutter. A schematic illustration of 
the biofunctionalization process is shown in Supplementary Fig. S4a. 

Viral nanoparticle synthesis 

SiO2 nanospheres with a refractive index of ~1.5 (similar to typical 
zoonotic viruses) were selected to mimic existing viruses. 1-mg SiO2 
nanoparticles suspended in ethanol were sonicated according to the 
diameter of the SiO2 particles (for detailed information, see Supple-
mentary Table S5). The nanoparticles were then dispersed in 50 μl of 1% 
3-aminopropyl triethoxysilane (APTES 99%; Sigma-Aldrich, USA, no. 
440140) dissolved in 99% ethanol and left overnight at room temper-
ature to cover their surface with amino functional groups. The following 
day, the mixture was centrifuged at 2000 rpm for 10 min and sequen-
tially immersed in ethanol (0.3 ml) and Milli-Q water (1 ml) three times. 
Afterward, the particles were submerged in a 10% glutaraldehyde so-
lution (diluted with 50 mM PBS), stored for 3 h, and centrifuged using 
the same procedures as before. The washed NPs were functionalized 
using an antigen (50 μg ml− 1) injection (Spike-RBD-His, InvivoGen, 
USA) and then stored overnight at 4 ◦C. A detailed illustration of the 
steps is provided in Supplementary Fig. S4b. 

Immunoassays on GT biosensor 

The viral solutions were diluted in PBS to concentrations ranging 
from 100 pg ml− 1 to 500 ng ml− 1. A 300-nl volume of each solution was 
dispensed into each sensing area of the GT biosensor using a gastight 
micro-syringe (Legato 210, KD Scientific Inc., USA). The circulation and 
agglomeration of bioparticles in the droplet are driven by hydrodynamic 
phenomena such as Marangoni flow [46] during the evaporation of the 
viral solution. Subsequently, the sensor was rinsed with PBS for 30 s and 
DI water for 10 s to eliminate the non-specific reactions of undesired 
components in the viral solution (as shown in Supplementary Fig. S4c). 
The conversion between the mass and number of nanoparticles is illus-
trated in Supplementary Fig. S4d. 

Image acquisition 

Optical microscopy (OM) images: The GT biosensor for capturing 

NPs was mounted onto a motorized scanning stage (SCANplus, Marz-
hauser Wetzlar, Germany) with a maximum travel speed of 50 mm s− 1, 
to scan the entire sensing area. Optical bright-field images were acquired 
using a 100 × objectives lens (MPlanFLN, Olympus, Japan) with a 
CMOS camera (STC-MCCM200U3V, OMRON SENTECH, Japan) con-
nected to a computer. Under a continuous white LED light source, the 
exposure time required to obtain a single image was 27.5 ms. The im-
aging field of view (FoV) of a single image was 169 µm × 141.4 µm 
(2448 × 2048 pixels). The practical FoV for video monitoring observa-
tions is 

FoV =
Image device size

Mob × MVCA
,

where Image device size = 8.45 mm × 7.07 mm; Mob: Objective Lens 
Magnification = 100; and MVCA: projected magnification for video 
camera adapter (including photo eyepiece) = 0.5. 

The whole sensing area (1 mm × 1 mm) was scanned using OM at 
the maximum travel speed and exposure time for 20 × 20 shots at 50-µm 
intervals and captured using StCamSWare software (OMRON SENTECH, 
Japan). The detailed specifications of the optical microscope system are 
provided in Supplementary Table S6. 

Image stitching: The optical micrographs were acquired using a 
CMOS camera (STC-MCCM200U3V, OMRON SENTECH, Japan) with a 
maximum frame rate of 35.8 fps; these were consecutively stitched using 
a customized automatic algorithm in MATLAB to obtain an integrated 
sensing area image. Considering the travel speed of the motorized stage 
and the exposure time, the defined sensing area of 1 mm × 1 mm was 
scanned in a raster pattern in less than 12 s at an optimized speed. 

Diffraction limit: The minimum diffraction limit of the microscopy 
system was determined to be 258 nm, as derived from the following 
Rayleigh formula: 

diffraction limit = 0.61 ×
λ

NA
.

Here, λ denotes the wavelength, which is 380 nm for the shortest 
visible wavelength [86]; NA is the numerical aperture of the objective 
lens, which is 0.9 (see details in Supplementary Table S6). 

Scanning electron microscopy (SEM) images: An ultra-high- 
resolution field emission scanning electron microscope (UHR FE-SEM; 
Verios 5 UC, ThermoFisher, USA) was used to obtain ground truth im-
ages of the NPs at the GIST Central Research Facilities (GCRF). A 3-nm- 
thick Pt layer was coated on the samples (which consisted of a GT 
resonator and SiO2 NPs) using a high-vacuum sputter coater (EM 
ACE600, Leica, Germany). SEM images were captured at a resolution of 
1536 × 1094 pixels and at six magnifications: 20k× , 25k× , 30k× , 
50k× , 60k× , and 100k× . The beam current was set to 25 pA or 0.4 nA, 
and the acceleration voltage was 10 kV or 20 kV, depending on the size 
of the NPs. To ensure that the NP clusters were located at the center of 
the images and not cropped out, the samples were carefully placed in the 
middle of the micrograph. 

Transmission electron microscopy (TEM) images: To obtain a cross- 
sectional view of the slanted Ge nanocolumns, a focused ion beam sys-
tem (FIB; ETHOS NX5000, HITACHI, Japan) was used to thin the GT 
biosensor. The prepared specimens were then imaged using a trans-
mission electron microscope (Tecnai G 530 S-Twin, FEI Co., USA) at the 
GCRF; this was equipped with both FIB and TEM capabilities. 

Reproduction of the ground truth density map from SEM images 

The data bars of the raw SEM images were trimmed, and the 
remaining images were converted to grayscale. The raw SEM images 
lacked sufficient contrast to clearly distinguish the contours of the NPs. 
To remedy this, neighboring pixels were smoothed using a median filter, 
and the contrasts of the SEM images were enhanced to increase the 
recognition rate. The entire image pre-processing was performed in 
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MATLAB (MathWorks, USA) and is described in Supplementary Fig. S8. 
A semi-automatic annotator based on the circle Hough Transform (from 
OpenCV-python) was developed to identify circles and edit the particle 
position. The annotated positional point of the particle was represented 
by the delta function δ(p − pi) where pi is the pixel; an annotation with x 
particles was represented by H(p) =

∑x
i=1δ(p − pi). To convert the 

annotation into a continuous density function, a Gaussian kernel Gσ was 
convolved, resulting in a density represented as F(p) = H(p) ∗ Gσ(p). 

OM cluster images corresponding to SEM images 

The raw OM images were cropped to match the sizes and positions of 
the clusters in the SEM images, by calculating the required pixels and 
magnification (see Supplementary Table S7). 

Data augmentation 

To enrich the training dataset, both the OM and SEM image datasets 
were augmented using various techniques (including random rotation, 
flipping, and modification of brightness and hue) within an acceptable 
range of environmental variations (see Supplementary Fig. S13). 

Five-fold cross-validation 

The DL model was trained on a dataset consisting of 2336 OM 
patches and their corresponding SEM images, encompassing particles of 
diverse sizes (50–300 nm) and 139 hard negative samples. To evaluate 
the feasibility of the model, we performed a five-fold cross-validation, 
with four folds used for training and one fold for testing in each itera-
tion. To assess the accuracy of the bioparticle count prediction, we 
introduced the mean average error (MAE) as a metric: 

MAE =

∑n
i=1|yi − xi|

n
.

Here, xi is the forecast value and yi is the actual value. 

Quantitative image analysis using convolutional neural network (CNN) 

Training equipment: The training and inference for the GT biosensor 
dataset were performed on a computer workstation equipped with an 
Intel Xeon E5–2698 v4 processor at 2.2 GHz (with 20 cores) and an 
NVIDIA RTX 3090 graphics card with 24 GB of memory. 

Training protocol: Our neural network was implemented in the 
publicly available PyTorch framework using an ADAM optimizer and a 
learning rate of 0.00001 (β1 = 0.9, β2 = 0.999); this took one day on a 
single NVIDIA RTX 3090. The input images were normalized to a zero 
mean and unit standard deviation to strengthen the learning procedure. 
The mean and standard deviation of each RGB channel in the OM images 
were [0.29237282, 0.28632027, 0.43138893] and [0.00953473, 
0.01360602, 0.01595942], respectively. The inference time for a single 
raw OM image was ~3 ms. 

Estimation and quantification: The Congested Scene Recognition 
Network (CSRNet), a model designed for crowd counting, was taken as a 
baseline model to estimate the number of bioparticles in the OM image 
cluster. The neural network was composed of two components: a CNN 
architecture for 2D feature extraction on the front end, and a dilated 
CNN for the back end; the latter used dilated kernels to achieve larger 
reception fields and to replace pooling computations. 

Transfer learning 

Transfer learning is a machine learning technique that involves 
reusing or modifying a model that has been trained for one task for use 
on a different—but related—task. The information and characteristics 
obtained during training on a task can be used to assist the model in 
learning or improving its performance on related ones. In this study, we 

fine-tuned a pre-trained DL model to estimate the number of bioparticles 
of varying sizes, demonstrating its generality and transferability to other 
types of biological NPs. 

Optical calculation 

The amplitude and phase of the reflected light from the NP-mounted 
GT biosensor were calculated using the finite-difference time-domain 
(FDTD) method with commercial software (FullWAVE, RSoft Design 
Group, Synopsys, USA). The structure of the NPs was reconstructed in 
computer-aided design software; the launched light was un-polarized 
visible light (wavelength: 400–800 nm). For an accurate simulation, 
all structures (including the GT biosensor) were matched in Euclidean 
coordinates, and complex parameters such as material dispersions and 
extinction coefficients were considered. In addition, the simulation 
conditions were set to a continuous plane wave and a grid size of 5 nm. A 
custom MATLAB code was developed to identify the effective complex 
refractive indices (using volume averaging theory) and convert the 
reflectance to the observed color. 

Statistical analyses 

All data were analyzed for statistical significance via one-way anal-
ysis of variance and Tukey’s post-hoc tests, implemented on OriginPro 
(OriginLab, USA). Statistical significance was determined as *P < 0.1, 
**P < 0.01, and ***P < 0.001. Standard deviation (SD) was also used. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nantod.2023.101968. 
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