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15.1 INTRODUCTION
In optoelectronic devices or optical components, the suppression of surface reflections caused by disconti-
nuity of the refractive index (RI) between two different optical media is crucial. For instance, the efficiency 
of a photovoltaic device is primarily limited by the Fresnel reflection loss on the surface of the device. Such 
a reflection loss is especially highlighted in materials with a high RI such as Si, GaAs, and GaP. Other 
optoelectronic devices, including light-emitting diodes (LEDs), laser diodes, and photodetectors, have 
similar problems [1,2]. A “ghost image” in glasses and other transparent materials is also generated by the 
Fresnel reflection loss [3]. Thin-film technology is commonly used for mass production of antireflection 
coatings (ARCs) with quarter wavelength stacks. However, it shows antireflection (AR) properties only in 
specific wavelength ranges and for limited incidence angles. Additionally, thin-film multilayers have prob-
lems with material appropriateness, thermal mismatch, and instability of the stacks [4].

Nowadays, the ideas of bionics have intruded into many technological fields. In the field of  optical 
science and technology, a variety of biomimetic concepts, including photonic crystals in opals, vivid 
colors in butterfly wings, and deformable eye lenses in birds and mammals, have been developed [5–7]. 
A few decades ago, Bernhard and Miller discovered that the outer surface of facet lenses in the eyes of a 
moth consists of an array of cuticular protuberances termed “corneal nipples” [8]. A set of facet lenses of 
the insect’s eye, the cornea, is approximately a hemisphere (Figure 15.1a). The convex outer surface of the 
facet lenses consists of the corneal nipples, which are locally arranged in a highly regular hexagonal lattice 
(Figure 15.1b and c) [9]. The optical action of the corneal nipple array is a severe reduction in the reflec-
tance of the facet lens surface [10]. The operation of the moth-eye surface may be understood most easily in 
terms of a surface layer, in which the RI varies gradually from unity to that of the bulk material [11]. The 
insight that nipple arrays can significantly reduce the surface reflectance has been widely applied [12].
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Closely packed nipple arrays can also be found in the wings of some moth species. The wings of adult 
Cephonodes are transparent except for small parts, that is, the wing margin and veins (Figure 15.1d). This 
transparent part has regular and hexagonal protuberances with no scales. The center-to-center distance 
between neighboring structures is about 200 nm, as shown in Figure 15.1e. Protuberances are dome- or 
nipple-shaped and have a constriction around their middle height [13]. Similar nipple arrays have also been 
observed on the wings of cicadas, which can be used for producing superhydrophobic surfaces for water-
repellent applications [14,15].

To overcome the limitation of multilayer structures, the biomimetic optical concept of the moth eye 
and effective media has been transferred into the technological world within the past decades. The interest 
in tapered subwavelength gratings was also driven by the new possibilities of numerical simulation and of 
micro and nanofabrication. Moreover, highly efficient optical devices with such moth-eye structures were 
reported. In this chapter, we begin by explaining the basic principles of the optic behavior in the moth-eye 
structures and other graded index media. Several fabrication techniques, including top-down, bottom-up, 
and soft molding, for creating antireflective nanostructures are discussed. Examples of silicon-based opto-
electronic devices illustrate the power of these concepts. We also discuss design guidelines and parametric 
studies for specific optoelectronic devices.

15.2 THEORY OF ANTIREFLECTIVE NANOSTRUCTURES
For traditional layered ARCs widely used in many optical and optoelectronic devices, the basic principle of 
a single-layer dielectric thin film with a low RI (n) on a substrate with a different RI (ns), where ns > n, fol-
lows the film interference law. Two interfaces are generated in the thin-film configuration, which produces 
two reflected waves, and destructive interference occurs when these two waves are out of phase. The mini-
mum reflection loss can be achieved for the optimized thickness and RI of an ARC, which are dependent 
on the wavelength, angle, and polarization of incident light. Therefore, single-layer ARCs can only obtain 
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Figure 15.1 Scanning electron micrographs of (a) the Attacus atlas moth eye showing the compound eye struc-
ture. (b) The nipple array in one facet lens. (c) The local arrangement of domains with highly ordered nipple arrays. 
(Reproduced from Ko, D.-H., et al., Biomimetic microlens array with antireflective ‘‘moth-eye’’ surface, Soft Matter 
7 (2011), 6404, By permission of The Royal Society of Chemistry.) (d) A hawkmoth, Cephonodes hylas, male. The 
letters under the animal are visible due to the transparent part of the wing. (e) The SEM image of the oblique view 
of the rough wing with protuberances. (Reproduced from Yoshida, A., et al., Antireflective nanoprotuberance 
array in the transparent wing of a hawkmoth, Cephonodes Hylas, Zool. Sci. 14 (1997), 737–41, By permission of The 
Zoological Society of Japan.)
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a high AR performance toward incident light under specific conditions, that is, wavelength, incidence 
angle, and polarization [16–18]. ARCs based on micro and nanostructure arrays follow an alternative way 
of reflectance reduction. Depending on the characteristic scale of the structures, two different ways of the 
interaction between the arrayed structures and incident light exist [17–19]. If the size of an individual unit 
is much larger than the wavelength, namely, a macrostructure unit, incident light is reflected normally and 
scattered after being absorbed partly. If the depth and the space between individual structural units are on 
the same scale as the light wavelength, light rays are trapped in the gaps leading to multiple internal reflec-
tions [20,21]. Thus, incident radiation can be absorbed reducing the reflection in the visible range to a very 
low level. The amount of the reflection is strongly dependent on the geometry of the structures.

On the contrary, when the AR structures have dimensions less than the wavelength, that is, located in 
the subwavelength scale or nanoscale, an alternative means is employed. If the AR surface has a gradient 
RI, light is insensitive to the AR structures and tends to bend progressively [22,23]. Even though the angle 
of incidence is changed, the coating still exhibits a relatively smooth change in the RI toward the incident 
direction of light, suppressing the reflection of light for a broad range of the wavelength [20,22]. Moreover, 
natural light always shows some degree of polarization, including s- and p-polarizations, which have the 
electric field perpendicular and parallel to the incidence plane, respectively. For the subwavelength-scale 
or nanoscale arrays with a smoothly graded RI from air to a substrate, the reflection of light with either 
s- or p-polarization can be suppressed to a very low level because the transmission of light with different 
polarizations is insensitive to media with extremely low disparity of the RI. Therefore, this type of ARCs 
based on nanostructure arrays with a gradient RI can realize broadband, omnidirectional, and polarization-
insensitive AR performance, which is superior to that of layered ARCs.

Generally, different nanostructure arrays may have different RI profile curves, such as linear,  parabolic, 
cubic, quintic, exponential, and exponential–sinusoidal curves, exhibiting different AR performances 
[21,24]. Theoretical computation is important in developing and optimizing high-performance AR 
surfaces. In the view of the effective medium theory (EMT), which is an essential concept for many 
computational models in the area of antireflectivity, the surface RI depends on the topology and the 
composition and can be calculated as a function of the volume fraction of inclusion for a material mix-
ture [17,18,25–27]. As for a nanostructure array film, the effective RI can be determined by considering 
the surface consisting of layers of homogeneous mixtures of nanostructured materials and the air in the 
interspaces. The rigorous coupled-wave analysis (RCWA), first proposed by Moharam and Gaylord in 1981, 
is widely used in the theoretical calculations to optimize the ARC design [28]. This analytical model is a 
relatively straightforward technique to exactly solve Maxwell’s equations to accurately analyze the diffrac-
tion of electromagnetic waves. In the RCWA, the cross-section of the structures is treated as consisting of 
a large number of thin layers parallel to the surface. A particular formulation without any approximations 
has been developed to analyze both transmission and reflection from planar and surface-relief structures 
accurately and efficiently. Using this model, the performance of AR structures can be predicted and the 
structure optimization of ARCs can be conducted.

As illustrated in Figure 15.2, ARCs can be classified into two basic types: those based on inhomoge-
neous layers and those that consist of a homogeneous layer [29,30]. A single inhomogeneous layer with RI 
nm on a substrate with RI ns at a wavelength λ has an optical thickness equal to λ/4 and the RIs satisfy the 
relation n n ns m( )=  (Figure 15.2a). However, these conditions can be satisfied only at a specific wavelength 
because of material dispersion. Double-inhomogeneous layers have a medium with a lower RI on the bot-
tom coating layer (Figure 15.2b). Although the two-step change of the RI from air to the substrate can 
reduce the reflection, discontinuity of the RI at each layer remains. Finally, multi-inhomogeneous layers 
have a graded index, indicating a smooth change in the RI of each layer. By the use of multiple thin-film 
layers, zero reflectance can be obtained at one or more wavelengths even if the RI relationship given above 
is not satisfied (Figure 15.2c). A lower effective index n of the homogeneous layer is achieved when the layer 
is patterned or structured. A homogeneous porous layer acts like a single inhomogeneous layer because a 
porous pattern without tapering means invariance of the effective index along the depth of the patterned 
layer (Figure 15.2d). A tapered porous layer has a graded index profile; however, the effective index of the 
layer changes abruptly at the end of the structure, causing a reflection loss at the surface (Figure 15.2e). 
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A smooth change in the effective RI can be achieved by introducing artificial moth-eye structures, pro-
vided that its thickness exceeds at least one or two waves and that the lateral dimensions of the patterns are 
less than the light wavelength (Figure 15.2f). When these conditions are satisfied, the EMT can be applied 
and the material–air structure can be represented by a series of thin films with RIs that vary gradually from 
unity (air) to ns, the substrate index.

A perfect ARC should meet the requirements of excellent AR properties, namely, broadband, omni-
directional, and polarization-insensitive antireflectivity [17,18]. The fact that there may be a difference in 
RI matching or optical impedance matching required for different wavelength regions, such as visible, 
 ultraviolet (UV), and near-infrared regions, impairs the broadband AR performance of ARCs. The inci-
dence angles have a significant impact on the reflectance. For example, most glass and plastics with an RI 
of ~1.5 exhibit a reflectance of 4% at normal incidence, but a much higher reflectance, even a reflectance 
of 100%, can be reached as the incidence angles are increased [17,18]. This causes difficulties in the case of 
solar cells that should be mechanically oriented to face the sun throughout the day, which needs additional 
control devices and energy consumption. Therefore, omnidirectional antireflectivity is important for the 
practical applications of ARCs in photovoltaic modules. Moreover, ARCs have to be insensitive to the light 
polarization because at smaller angles, p-polarized light is maximally reflected. Therefore, a perfect anti-
reflective coating should exhibit broadband, omnidirectional, and polarization-insensitive antireflectivity. 
A  traditional layered AR film has difficulties with satisfying all the requirements because of the fundamen-
tal interference destructive principles. There has been considerable progress toward perfect ARCs based on 
nanostructure arrays in recent years.
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Figure 15.2 Structure and effective RI profiles of various types of ARCs. (a)–(c) Inhomogeneous single-layer, 
multilayer, and graded-index ARCs and (d)–(f) homogeneous porous, tapered porous, and moth-eye ARCs.
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15.3 ARTIFICIALLY ENGINEERED MOTH-EYE STRUCTURES

15.3.1 QUARTER-WAVELENGTH ARC AND MULTILAYER ARC

The AR performance of traditional quarter-wavelength ARCs depends on the coating thickness and the 
material RI. Careful control of both factors would result in lowering the amount of the reflection from the 
surface [31,32]. As mentioned in Chapter 2, optical reflection can be efficiently suppressed if the RI of the 
coating material is equal to the geometric mean of the RIs of the two media at the interface [33]. A quarter-
wavelength coating will allow light reflected from the surrounding medium/ARC interface and the ARC/
substrate interface to interfere destructively, eliminating the reflection. The amount of the reflection also 
depends on the angle of the incident light [24,34]. Numerous methods of quarter-wavelength ARC produc-
tion have been developed, for example, vacuum-based deposition processes and layer-by-layer deposition of 
polyelectrolyte and/or nanoparticle films [31].

A limited number of materials with an adequate RI (generally for low-RI substrates) are one of the 
major limitations of single-layer coating. The use of composite single-layer ARCs, whose RI can be tuned 
by changing the ratio (filling factor) of the constituents of the composite, is one of the solutions to this 
problem. As shown in Figure 15.3a, mesoporous silica nanoparticles are used for fabricating antireflective 
coatings on glass substrates [35]. The combination of mesoporous silica nanoparticles in conjunction with 
a suitable binder material allows mechanically robust single-layer coatings with a reflectance of <0.1% to 
be produced by using simple wet-processing techniques (Figure 15.3b). Further advantages of these films 
are that their structure results in antireflective properties with a minimum reflection that can be tuned 
between 400 and 1900 nm. The ratio of the binder material to mesoporous nanoparticles allows the RI 
control [35]. Double-layer ARCs are also widely used for reflection reduction. In the case of double-layer 
ARCs, the upper film facing air usually has the lowest RI and another layer is made successively based 
on the ascending order of their RIs. Similar to single-layer coating, the interference conditions should 
be fulfilled to destructively cancel bouncing back waves off the substance surface. Hence, the thickness 
of each layer is usually a quarter or half of the wavelength. Similar to single-layer ARC, each layer of a 
double-layer configuration can be made of a composite material with a tunable RI to provide more design 
flexibility [36]. The AR in a wide wavelength range originates from a reasonable RI gradient from air to 
the substrate produced by mesopores in the bottom-layer silica coating and particle-packed pores in the 
top-layer silica coating (Figure 15.3c and e). The maximum transmittance of the broadband ARC was 
approximated to 100.0% at the peak value and above 99.6% in the visible region from 400 to 800 nm. 
Meanwhile, the average transmittance of the coating was more than 99.0% over the range of 360–920 nm 
(Figure 15.3d). In addition, the double-layer broadband silica ARC showed a considerable mechanical 
performance and a high environmental stability [37].

15.3.2 GRADED-INDEX ARC

A gradual change in the film RI from the substrate RI (ns) to the air RI (nair) is an alternative way of reflec-
tance reduction. Interference effects in the stacking layers of a dielectric rely on multipass light circulation 
inside the optical media formed by the films [36,38]. This means that the reflection of a multilayer coating 
strongly correlates with the thickness and RI of each layer. Nanostructured multilayers for graded-index 
ARC are achieved using oblique-angle deposition [39,40]. Oblique-angle deposition provides the control 
on the thin-film porosity and thickness, resulting in consistency of the ARC design parameters with actual 
parameters [41,42].

Figure 15.4 shows several examples of multilayered gradient media for broadband AR characteristics 
[43–45]. For instance, a three-layer graded-index ARC to Si is composed of the following layers: the first 
layer of TiO2 (n = 2.66 at 550 nm), the second layer of SiO2 (n = 1.47 at 550 nm), and the third layer of 
low-n SiO2 (n = 1.07 at 550 nm) (Figure 15.4a). The first layer of TiO2 and the second layer of SiO2 are 
deposited by means of reactive sputtering. The third layer of porous SiO2 is deposited using the oblique-
angle e-beam evaporation technique (Figure 15.4b). The desired low RI is achieved by mounting the sample 
such that the substrate normal is at 85° to the incoming flux. By averaging over the wavelength range from 
400 to 1100 nm and the incidence angle range of 0°–90°, it is found that polished Si reflects ~37% of 
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incident radiation. The reflection losses are reduced to only 5.9% by applying a three-layer graded-index 
ARC to Si (Figure 15.4c) [43]. A four-layer tailored- and low-RI ARC on an inverted metamorphic (IMM) 
triple-junction solar cell device is demonstrated (Figure 15.4d). By utilizing the oblique-angle e-beam 
deposition and physical vapor deposition (sputtering) methods, the four-layer ARC was fabricated on an 
IMM solar cell device (Figure 15.4e). By incorporating tailored- and low-RI materials into the ARC design 
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Figure 15.3 (a) Cross-sectional SEM image of a single-layer silica ARC on a glass substrate. (b) The experimental 
reflection spectra of glass and the ARC and the theoretically calculated reflection spectra of the single-layer silica 
ARC and MgF2. (Reprinted with permission from Moghal, J., et al., High-performance, single-layer antireflective opti-
cal coatings comprising mesoporous silica nanoparticles, ACS App. Mater. Interfaces 4, 2 (2012), 854–859. Copyright 
2012 American Chemical Society.) (c) The schematic illustration of the double-layer broadband silica ARC. A reason-
able RI gradient from air to the substrate was produced with ordered mesopores in the bottom layer and particle-
packed pores in the top layer. (d) The transmittance spectra of the experimental and theoretical fitting double-layer 
silica ARCs and the quartz substrate, overlaid with the solar spectral irradiance at air mass (AM) 1.5. The prepared 
broadband coating showed consistency of the optical transmission of the double-layer broadband ARC with the 
solar spectrum. (e) The cross-sectional SEM image of the double-layer broadband silica ARC, from which the thick-
ness of each layer was clearly observed. The broadband ARC was coated on a silicon wafer, and the cross-section of 
the coating was sprayed with Au nanoparticles prior to SEM imaging. (Reproduced from Sun, J., et al., A broadband 
antireflective coating based on a double-layer system containing mesoporous silica and nanoporous silica, J. Mater. 
Chem. C, 3 (2015), 7187–7194. By permission of The Royal Society of Chemistry.)
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and fabrication, significant progress in terms of the optical efficiency was achieved in the implementation of 
quasi-continuously graded RI ARCs with so-called quintic or modified-quintic profiles. ARCs with these 
RI profiles are able to achieve improved broadband and omnidirectional AR characteristics in comparison 
to conventional double-layer ARCs (Figure 15.4f) [44].

The graded RI structure can also be applied to a thin-film amorphous-Si (a-Si) solar cell (Figure 15.4g 
and h). The graded RI structure fabricated using oblique angle deposition suppresses optical reflection in 
wide wavelength and incidence angle ranges compared to the conventional structure without graded index 
layers. Such graded index media are embedded inside the device structures, which are not available in 
conventional micro or nanostructures. The average reflectance of the thin-film a-Si solar cell structure with 
the graded RI structure is suppressed by 54% at normal incidence owing to effective RI matching between 
indium tin oxide and a-Si [45].
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Figure 15.4 (a, b) Schematic and SEM image of three-layer graded-index AR coating; the refractive-index 
values are measured at 550 nm. (c) Solar spectrum and reflectance of silicon substrate with no AR coating, 
ideal Si3N4 AR coating, and three-layer graded-index AR coating. (Reprinted with permission from Chhajed, S., 
et al., Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and 
omnidirectional characteristics, Appl. Phys. Lett., 93 (2008), 251108. Copyright 2008 American Institute of 
Physics.) (d) Schematic layer sequence of an inverted metamorphic (IMM) triple-junction solar cell with four-
layer AR  coating. (e) SEM cross-sectional image of the four-layer AR coating deposited on a silicon substrate. 
(f) Photograph of three IMM solar cells with (i) no AR coating, (ii) double-layered AR coating, and (iii) four-layer 
AR coating. (Reproduced from Yan, X., et al.: Enhanced omnidirectional photovoltaic performance of solar cells 
using multiple-discrete-layer tailored- and low-refractive index anti-reflection coatings. Adv. Funct. Mater. 2013. 
23. 583–590. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. With permission.) (g) Schematic diagrams of typical 
superstrate-type thin-film solar cell structure (Sample A) and graded-index structure (Sample B). The magnified 
images in red squares express the light propagation through the interface between ITO and a-Si layer with and 
without the graded-index structure. (h) SEM image of the structure with the graded-index structure. The inset is 
a TEM image of the graded-index structure. (Reproduced from Jang, S.J., et al., Antireflective property of thin 
film a-Si solar cell structures with graded refractive index structure, Opt. Express, 19 (2011), 108–117. With permis-
sion of Optical Society of America.)
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15.3.3 POROUS ARC

As mentioned in Chapter 2, subwavelength-scale porous materials could have AR properties. Usually, such 
porous materials are generated using chemical etching of a substrate. Among the fabrication methods of 
Si nanostructures, metal-assisted chemical etching has attracted increasing attention in recent years owing 
to simplicity and low operating costs [46,47]. A nanoscale porous structure is the typical morphology of 
Si etched using the metal-assisted chemical etching method. In a typical metal-assisted chemical etching 
procedure, a Si substrate partly covered by a noble metal is subjected to an etchant composed of HF and an 
oxidative agent. Typically, the Si beneath the noble metal is etched much faster than Si without noble metal 
coverage. As a result, the noble metal sinks into the Si substrate, generating pores in the Si substrate or, 
additionally, Si wires [47].

Such porous silicon structures show a prominent AR property. Porous Si fabricated by etching a polycrys-
talline Si substrate in a Ag particle–loaded Si substrate in a H2O2/HF solution revealed reduced reflectances 
in the wavelength range of 300–800 nm (Figure 15.5a and b) [48]. Wafer-scale silicon nano and microwires 
are also fabricated by using metal-assisted electroless etching for solar cell applications (Figure 15.5c–g). The 
optical reflectance spectra of the co-integrated wire samples are varied as a function of KOH etching in the 
wavelength range of 300–1000 nm (Figure 15.5h). The highest reflectance of the agglomerated nanowires 
(KOH 0 s) is not greater than ~2.5%, with an average reflectance of ~2.0% in the range of 300–1000 nm [49].

15.3.4 MOTH-EYE ARC

The biomimetic moth-eye structure can be understood easily in terms of a thin film, in which the RI 
changes gradually from the structure top to the bulk materials [50]. In case of a structured film with a 
gradient RI, we can regard the reflectance of the moth-eye surface as a resultant of an infinite series of 
reflections at each incremental change in the index [51]. To fabricate a high-performance artificial moth-eye 
structure, three structural features are generally required: the height and period of the arrays and the dis-
tance between the arrays. For the moth-eye surface, the period of the structures should be sufficiently small 
so that the array cannot be resolved by incident light. If this condition is fulfilled, we assume that at any 
depth, the effective RI is the mean of that of air and the bulk materials, weight in proportion to the volume 
of the materials. The condition that the moth-eye array should not be resolved by light is that the direction 
of the first diffracted order is over the horizon. For an ideal case of the moth-eye structure, it should show 
a tapered profile, the period should be as fine as possible, and the depth should be as great as possible to 
provide the widest bandwidth and almost omnidirectional antireflective properties [52].

Many techniques based on top-down lithography, such as electron-beam lithography [53,54], focused 
ion beam [55], interference lithography [56–58], and nanoimprint lithography [59], have been applied 
to fabricated AR structured surfaces. To avoid scattering from the optical interface, its structure dimen-
sion has to be smaller than the wavelength of the incident light [11,60]. For UV and visible light applica-
tions, the feature size should always be below 200 nm. In such a small size range, conventional top-down 
lithographic technologies (electron-beam etching and fast atom beam) require sophisticated equipment and 
are time-consuming and expensive for large-area fabrication for practical applications. To overcome the 
limitations of electron-beam etching, nanoimprint lithography is introduced to fabricate various functional 
polymer nanopillar arrays with a high throughput [61,62]. Moreover, by using such polymer arrays as 
masks, many functional material nanopillar arrays can be prepared by utilizing reactive ion etching (RIE).

Colloidal lithography is a low-cost and relatively high-throughput technique for patterning nanostruc-
tures [41]. The advantage of colloidal lithography in nanofabrication is that large-area self-assembly of 
colloids having well-ordered structures can be performed without expensive equipment [63,64]. Colloidal 
lithography is a simple, cost-effective, time-effective, and reproductive method to fabricate moth-eye 
structures on many materials [65–69]. Two-dimensional (2D) colloidal crystals are used as etch masks on a 
substrate [64,70]. Then, substrates are etched by implementing RIE [71]. In the process of RIE, the sphere 
masks can also be etched by reactive ions, and with an increase in the etching duration, the sphere masks 
were etched away gradually. Therefore, as the traverse diameter of a sphere was decreased, the etched area 
of an underlying substrate increased gradually, whereas the top diameter of the obtained structure was 
nearly the same as the traverse diameter of the sphere above, which led to the shape transformation of the 
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obtained structure from cylinder to frustum of cone. When the sphere disappeared, the obtained textured 
profile started to change from the frustum of a cone to a cone because the top region of the etched sub-
strate was nearer to the plasma, and thus it was etched more rapidly than narrow bottom areas between the 
frustum of the cones. Using colloidal lithography, subwavelength pyramidal and honeycomb structures are 
fabricated and optimized in solar cells. Subwavelength-scale monolayer and bilayer polystyrene spheres are 
combined using the one-step reactive ion etching process to fabricate optimized pyramid- and honeycomb 
shaped AR structures, respectively. A close-packed monolayer of 350 nm-diameter polystyrene spheres 
was coated on a silicon substrate using a dip coater (Figure 15.6a). The period of the pyramidal structure 
remained 350 nm, and the height was 480 nm (Figure 15.6b). Etched silicon has a height of 310 nm and a 
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Figure 15.5 (a) SEM images of p-Si wafers subjected to MacEtch in 1:1:1 (v:v:v) HF (49%):H2O2 (30%):ethanol solu-
tion for 12 h at 300 K by using catalytic Ag particles deposited on Si via silver-mirror reaction. The top macropo-
rous layers were removed by dipping in NaOH (1%) for 15 min. The used wafers are p-Si (100) and p-Si (111). The 
images are displayed at different magnifications and orientations. (b) The reflectivity of the samples before and 
after MacEtch. Curves 1, 2, and 3 represent the unetched p-Si (100), etched p-Si (111), and etched p-Si (100) sam-
ples, respectively. (Reproduced with kind permission from Springer Science+Business Media: J. Electron. Mater., 
Metal-assisted chemical etching using Tollen’s reagent to deposit silver nanoparticle catalysts for fabrication of 
quasi-ordered silicon micro/nanostructures, 40, 2011, 2480–2485, Geng, et al.) (c) The photograph showing the 
wafer scale (4-inch) fabrication of a co-integrated, tapered nano and microwire (CNMW) structure. The effect of 
the KOH etching time after the formation of a CNMW structure is shown using 30°-tilted view SEM images: (c) 0, 
(d) 30, (e) 60, (f) 120, and (g) 240 s with the same scale bars of 10 μm. (h) The optical reflectance spectra of the 
CNMW samples as a function of the KOH etching time. (The source of the material Jung, J.-Y., et al., A waferscale 
Si wire solar cell using radial and bulk p–n junctions, Nanotechnology, 21, 445303, 2010 is acknowledged.)
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small flat roof appeared when the etching was performed for 35 s. Upon increasing the etching duration, 
the top of etched silicon became sharper and the width narrower. The height of etched silicon increased 
to 480 nm (60 s) then decreased to 380 nm (150 s) (Figure 15.6c). The reflectance within the wavelength 
regime from 350 nm to 850 nm was less than 2.5% for the sample obtained at an etching duration of 60 s 
(Figure 15.6d) [68].

Nanocone arrays using a wafer-scale Langmuir–Blodgett assembly and etching technique are  fabricated 
for enhanced broadband AR in solar cell applications (Figure 15.6e–f). The Langmuir–Blodgett method 
was used to assemble silica nanoparticles into a close-packed monolayer on top of an a-Si:H thin film. These 
silica nanoparticles were then used as an etch mask during a chlorine-based RIE process. It is believed that 
the conical shape is due to the gradual shrinkage of the size of the silica nanoparticle. After RIE, the silica 
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Figure 15.6 (a) Close-packed monolayer of 350-nm-diameter polystyrene spheres coated on a silicon substrate. 
(b) The SEM image of pyramidal structures (period: 350 nm) transferred to silicon. (c) The top-view and cross-
sectional images of the textured profiles obtained after etching for 30, 60, 100, and 150 s. (d) The measured 
reflectance spectra of the textured silicon samples prepared using various etching durations. (Reproduced from 
Chen, H.L., et al., Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb 
structures in solar cells, Opt. Express, 15 (2007), 14793–14803. With permission of Optical Society of America.) 
(e) SEM images in a large area of a monolayer of a-Si:H nanocone arrays. (f) Zoom-in SEM images of a-Si:H nano-
cone arrays. (g) Photographs of a-Si:H thin film (left), nanowire arrays (middle), and nanocone arrays (right). (h-i) 
Measured value of absorption on samples with a-Si:H thin film, nanowire arrays, and nanocone arrays as top layer 
over (h) a large range of wavelengths at normal incidence and (i) different angles of incidence (at wavelength 
λ = 488 nm). (Reprinted with permission from Zhu, J., et al., Optical absorption enhancement in amorphous silicon 
nanowire and nanocone arrays, Nano Lett., 9 (2009), 279–282. Copyright 2009 American Chemical Society.)
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nanoparticles were so small that they were no longer observable on top of nanocones. The sample with 
nanocone arrays looks black, exhibiting enhanced absorption due to suppression of reflection from the front 
surface (Figure 15.6g). From Figure 15.6, it is obvious that, under identical conditions, the sample with 
nanocone arrays absorbed the most light, whereas the thin-film sample reflected the most light. The nano-
cone arrays provided excellent impedance matching between a-Si:H and air through a gradual reduction 
in the effective RI away from the surface and, therefore, exhibited enhanced absorption due to superior AR 
properties over a large range of wavelengths and angles of incidence (Figure 15.6h–i) [72].

15.3.5 IDEAL GEOMETRY OF THE MOTH-EYE ARC

By the observation of corneal nipple arrays of various butterfly species and reflectance calculations of three 
different types of subwavelength structures (SWSs) using a thin-film multilayer model, Stavenga et al. 
showed that the parabola shape provides better AR properties than the cone and Gaussian-bell shapes [10]. 
In the EMT, the parabola shape yields a nearly linear RI gradient, which is efficient to reduce the surface 
reflection. To obtain SWSs with a conical profile, many fabrication methods, such as electron-beam/interfer-
ence lithography [58,73–78], nanoimprint lithography [74,79,80], nanosphere or colloid formation [81–84], 
metal nanoparticles [85,86], and Langmuir–Blodgett assembly [72,87], have been proposed. However, it 
is difficult for these techniques to guarantee the formation of the parabola shape because the shape of the 
SWSs depends on complicated process control. However, the combination of interference lithography, 
thermal reflow, and subsequent pattern transfer is used to obtain the ideal shape of the moth-eye structure 
(Figure 15.7a). The fabricated SWSs consist of parabolic grating patterns, resulting in a linearly graded index 
profile. An increase in the process pressure improves the etch selectivity of PR, which leads to a taller height. 
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Figure 15.7 (a) Schematic illustration of the fabrication procedure of the parabola-shaped SWSs on the GaAs 
substrate used in this experiment. The scale bar in the SEM images is 500 nm. (b) The SEM images of the 
parabola-shaped SWSs fabricated at process pressures of 2, 20, and 50 mTorr. (c) The measured reflectance as a 
function of the wavelength for the fabricated parabola-shaped SWSs on the GaAs substrate at process pressures 
of 20 mTorr and 50 mTorr. The measured reflectance of bulk GaAs is shown as a reference. Templated silicon pillar 
arrays by using a nonclose-packed colloidal monolayer. (Reproduced from Song, Y.M., et al.: Bioinspired parabola 
subwavelength structures for improved broadband antireflection. Small. 2010. 6. 984–7. Copyright Wiley-VCH 
Verlag GmbH & Co. KGaA. With permission.) (d) The photograph of a 4-inch silicon wafer with the right half cov-
ered by subwavelength pillars and the left half unetched. The sample is illuminated by white light. (e) The silicon 
pillars after 10 min RIE. (f) The silicon pillars after 50 min RIE. (g) The pillar depth dependence on the RIE dura-
tion. (Reproduced from Min, W.-L., et al.: Bioinspired self-cleaning antireflection coatings. Adv. Mater. 2008. 20. 
3914–3918. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. With permission.)
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The etch selectivity is varied from 1 to 3 simply by increasing the process pressure from 2 to 50 mTorr. 
This means that the aspect ratio, that is, the height under the same period, can be controlled easily by 
adjusting the process pressure during the ICP etching procedure without the use of a complex gas mixture 
or additional process steps. The morphology of the etched surface through the lens-like PR mask is smooth, 
and these grating patterns are uniform (Figure 15.7b). Two SWS samples on the GaAs substrate suppress 
drastically the Fresnel reflection compared to that of the flat GaAs surface (Figure 15.7c) [56]. Based on a 
simple and scalable spin-coating technique that enables wafer-scale production of colloidal crystals with 
ncp structures, colloidal lithography is also used to obtain uniform moth-eye structures with a high aspect 
ratio. Broadband silicon moth-eye structures have been fabricated by using a 2D ncp colloidal crystal as the 
etching mask during an SF6 RIE process (Figure 15.7d–g). The nonwetting properties are also obtained to 
ultimately realize self-cleaning broadband ARCs on silicon substrates [88].

15.3.6 LARGE-SCALE FABRICATION OF ARCs

For high-performance broadband antireflective properties of the moth-eye structure over large areas, high-
aspect ratio silicon random nanotip arrays are fabricated by using high-density electron cyclotron resonance 
plasma etching (Figure 15.8a–c). The geometric features of the silicon nanotip arrays were characterized by 
the apex diameter in the range of 3–5 nm, a base diameter of 200 nm, and lengths from 1 to 16 μm. Such 
AR structured surfaces can suppress light reflection in the wavelength range from UV, through the visible 
part of the spectrum, to the terahertz region. Reflection is suppressed in a wide range of the incidence 
angles and for both s- and p-polarized light. Excellent antireflective properties of such an antireflective 
structure are close to those of ideal antireflective surfaces (Figure 15.8d–g) [89].
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Figure 15.8 (a) Photographic images showing the 6 inch polished silicon wafer (left) and the wafer coated with 
Si nanotip structures (right). The SEM images showing the tilted top view (b) and the cross-sectional view (c) of Si 
nanotip structures with a length of 1,600 nm. (d) The hemispherical reflectance (using an integrating sphere) as a 
function of the wavelength for a planar Si wafer (solid line, black) and Si nanotip structures (symbols) for L = 1.6 
(green), 5.5 (blue), and 16 μm (red) at the UV, visible, and near-infrared wavelengths. (e) The specular reflectance 
(without an integrating sphere) as a function of the wavelength in the mid-infrared region for an incidence angle 
of 30°. (f–g) Comparison of the specular reflectance as a function of the wavelength for a planar silicon wafer 
(solid line, black) and Si nanotip structures with L = 16 μm (red) in the far-infrared (f) and terahertz (g) regions for 
an incidence angle of 30°. The inset in (f) shows the cross-sectional SEM image of the Si nanotip structures with 
L = 16 μm. The inset in (g) compares the reflectance in planar silicon (solid line, black) and Si nanotip structures 
(symbols, red) with unpolarized light and an incidence angle of 30° (filled squares) and 45° (open squares). The 
solid red lines in the inset of (f) are guides to the eye. (Reprinted by permission from Macmillan Publishers Ltd: 
Nature Nanotechnology [89], copyright © 2007.)
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15.3.7 COMPOUND-EYE ARC—HIERARCHICAL MICRO AND NANOSTRUCTURES

An antireflective compound-eye surface structure was generated by applying the moth-eye structure to 
another structure. By employing KOH etching and silver catalytic etching, pyramidal hierarchical struc-
tures were generated on the crystalline silicon wafer (Figure 15.9a–c). The hierarchical structures  exhibited 
strong AR and superhydrophobic properties after fluorination (Figure 15.9d). Furthermore, a flexible 
superhydrophobic substrate was fabricated by transferring a hierarchical Si structure to NOA 63 film using 
UV-assisted imprint lithography. This method is of potential application in optical, optoelectronic, and 
wettability control devices [90].

The details of the AR technologies discussed in this chapter, including AR mechanisms, AR materials, 
fabrication methods, AR structure, and final reflection, are summarized in Table 15.1.
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Figure 15.9 (a) Fabrication procedure for creating hierarchical structures on the silicon surface. (b) The pho-
tographs of the polished silicon wafer (left) and the hierarchically structured silicon wafer (right). (c) The cross-
sectional SEM photographs of silicon pyramids created using KOH etching and hierarchical structures generated 
by utilizing Ag-assisted etching. The inset is the magnified SEM image. (d) The hemispherical reflectance spectra 
of flat silicon (i), nanohole textured silicon surface (ii), pyramid textured silicon surface (iii), and hierarchically 
structured silicon (iv). (Reprinted with permission from Qi, D., et al., Simple approach to wafer-scale self-cleaning 
antireflective silicon surfaces, Langmuir, 25, 14 (2009), 7769–7772. Copyright 2009 American Chemical Society.)
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15.4 OPTICAL DEVICE APPLICATIONS
Thin-film crystalline silicon (c-Si) solar cells are one of the promising candidates for low-cost  photovoltaic 
applications because of commercially compatible mass-production processes. However, a relatively thin 
absorption region tends to degrade the cell efficiency, which is the main drawback of thin-film solar 
cells [109]. To improve light absorption in thin-film solar cells, the Fresnel reflection at the air/silicon 
interface in the range of the entire solar spectrum should be minimized. For silicon solar cell applications, 

Table 15.1 Summary of technical details of the AR technologies discussed in this chapter

TYPE FABRICATION METHODS MATERIALS REFLECTION, % REFERENCE

Quarter-
wavelength

Seeding and growth method ZnO nanostructures ∼6.6 [91]
Convective assembly SiO2 ∼11 [92]
Spin coating TiO2 ∼8 [93]

Multilayer Remote PECVD Porous SiO2/SiN <1 [94]
Electron cyclotron resonance 
PECVD

SiO2/TiO2 <0.5 [95]

PECVD SiN <3 [96,97]
Immersion in carbonate-
based solutions followed 
by stain etching

Carbonate-based 
solutions, HNO3/HF 
and SiNx

3.16 [98]

Graded index Oblique-angle deposition TiO2/SiO2/
nanostructured SiO2

5.9 [43]

Electron beam lithography 
followed by SF6 etching

EB-positive resist 0.5 [54]

Spin coating, etching SiO2 <2 [88,99]
Reactive ion etching – <3 [100]

Porous ARC Electrochemical etching Ethanol-based solution 
of 33.3 wt% HF

8.93 [101]

Interference lithography and 
then metal-assisted 
chemical etching

Si photonic crystals ∼3 [102]

Electochemical etching, 
HF:ethanol, (1:4 ratio)

HF:ethanol, (1:4 ratio) ∼1 [103]

Spin coating, RIE, 
templating

SiO2 and polymer 
posts, gold nanoholes

<0.5 [104]

Moth eye Spin coating and then 
anisotropic wet etching

SiO2 ∼2 [82]

Nanoimprint technique UV-sensitive resist ∼1 [105]
Microreactor-assisted 
nanomaterial deposition

Solution-processed Ag 
nanoparticles, ZnO

3.4 [106]

Reactive ion etching Polystyrene nanobeads ∼3.8 [107]
UV-nanoimprint lithography Anodized aluminum 

oxide
4 [108]

Spin coating, RIE SiO2 <2.5 [83]
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broadband AR is needed to cover the whole absorption range of silicon in the solar spectrum. Moreover, to 
achieve a high absorption efficiency for the entire day, the angle-independent AR property is required [20]. 
Conventional thin-film ARCs exhibit reflection reduced by their interference principle; however, this can 
only work in a limited wavelength range. Although multilayer ARC is commonly used for broadband AR, 
it has problems related to material selection, thermal mismatch, and instability of thin-film stacks [4]. As 
an alternate to thin-film coatings, submicrometer grating (SMG) structures with a tapered feature, origi-
nally inspired by the excellent antireflective capability of the corneal of night-active insects, have been 
focused on as a more practical method for ultra broadband and omnidirectional ARs (Figure 15.10a). In 
comparison to single-layer and double-layer ARCs, the calculated reflectance of SMG structures on the top 
surface of c-Si has broader AR regions (Figure 15.10b). Tapered structures with a taller height and a shorter 
period are desirable for broadband AR properties; however, a taller structure requires complex process 
steps, which increase the fabrication cost. Therefore, the optimum geometry with an appropriate height 
and period is needed in practical solar cell applications. SMG structures with a period of 400 nm and a 
height of 400 nm exhibit a higher cell efficiency in a reasonable process range (Figure 15.10c). The cell 
efficiency of c-Si solar cells with a flat surface drops rapidly as the incidence angle increases because of the 
increased reflection loss. However, in SMG-integrated solar cells, the cell efficiency is stable at an incidence 
angle greater than 60°, and it is degraded by only 8.3% at 70° compared to that at 0° (Figure 15.10d) [20]. 

(i) Flat surface (ii) Single layer ARC (SiNx)

(iii) Double layer ARC (Zns/MgF2) (iv) Silicon SWS 

800

700

600

500

400

300

200

100
200 400

Period (nm)

2 μm cell thickness

H
ei

gh
t (

nm
)

600 800 1000 1200

Cell efficiency

C
el

l e
ffi

ci
en

cy
 (%

)
Re

fle
ct

an
ce

 (%
)

<10.50%

18

0
300 400 500 600 700 800

Wavelength (nm)
(b)(a)

900 1000 1100 1200

–8.30%
+8.04%

–9.20%

–14.96%

–48.29%

20

40

60

80

100
Flat surface

Flat surface
Single ARC
Double ARC
SWS (400 nm period)

Single layer ARC
Double layer ARC
SWG

16

14

12

10

8

6

4

2

0 10 20 30 40 50 60 70 80 90
Incident angle (degree)

(c) (d)

11.30%

12.11%

12.91%
13.72%

14.52%

400 nm

400 nm

Crystalline
silicon (2 μm)

Al back reflector

Crystalline
silicon (2 μm)

Al back reflector

Crystalline
silicon (2 μm)

Al back reflector

Crystalline
silicon (2 μm)

Al back reflector

Figure 15.10 (a) Thin-film c-Si solar cells with four different surface structures: (i) flat surface, (ii) single-layer ARC, 
(iii) double-layer ARC, and (iv) antireflective SWSs. (b) The calculated reflectance spectra of thin-film c-Si solar 
cells with an Al metallic back reflector for four different surface structures. AM 1.5 solar spectrum is also shown 
as a reference. (c) The contour map for the cell efficiency of the SWS integrated thin-film c-Si solar cells as a func-
tion of the cone period and height. (d) The cell efficiencies of the 2-μm-thick c-Si solar cells with four different 
surface structures as a function of incidence angle. The period and height of the SWSs are 400 nm. (Reproduced 
form Song, Y.M., et al., Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption 
enhancement, Opt. Lett., 35, 3 (2010), 276–278. With permission of Optical Society of America.)
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The device exhibits a higher performance at a slightly tilted incidence angle compared to the normal inci-
dence angle. This efficiency enhancement is attributed to the extended optical path length [110].

Silicon nanostructure arrays have the potential to increase the power conversion efficiency of photovol-
taic devices. Nevertheless, so far, photovoltaic cells based on nanostructured silicon exhibit lower power 
conversion efficiencies than conventional cells owing to enhanced photocarrier recombination associated 
with the nanostructures [111]. Increased photocarrier recombination at the dramatically increased surface 
area of nanostructured silicon decreases the cell efficiency by reducing the device short-circuit current Jsc 
and open-circuit voltage Voc. For example, in antireflective nanostructured silicon solar cells made by gold-
nanoparticle catalyzed etching, increased recombination was observed, and it dramatically reduced the 
collection of photocarriers generated by blue and green (i.e., 350–600 nm) photons [112]. However, it was 
only possible to model the measured quantum efficiency of these nanostructured cells by including a dead 
layer extending ~500 nm beneath the front surface, in which the minority carrier lifetime was extremely 
low. This dead layer was roughly as thick as the nanoporous layer itself, and modeling with increased planar 
surface recombination alone could not be performed. It has recently been reported that the blue quantum 
efficiency could be increased by decreasing the nanopore depth, but this inevitably compromised the ben-
eficial effects of the nanostructure for photon management [111,113].

Small cone-like subwavelength structures for solar cells were fabricated uniformly on the Si surface, 
although the periodicity was not perfect (Figure 15.11a). The period and height for the SWS were 
around 100 and 300 nm, respectively. Test solar cells were fabricated to demonstrate the wideangle 
AR effect of the SWS in solar cells. A Si SWS with a high aspect ratio was fabricated on p-type 
Czochralski-grown (CZ) Si wafers by dry etching using anodic porous alumina masks. After the 
formation of the SWS, phosphorus diffusion was carried out using a standard quartz tube furnace 
with POCl3 at 850°C to fabricate a p–n junction. A Ag-based front grid and Al rear contact were 
formed by vacuum evaporation and successive firing. The finger grid pattern on the front side with a 
covered area of about 11% was fabricated by photolithography. The spectral reflectivity of the SWS 
measured using diffuse reflection optics shows a very low reflectivity over a wide range of wavelengths 
(Figure 15.11b). The SWS cell clearly showed higher short-circuit current density, Jsc, and slightly 
higher open-circuit voltage, Voc, than those of the flat cell. These improvements are attributable to the 
reduction of surface reflection loss by the SWS. However, the obtained Jsc for the SWS cell was lower 
than expected from its very low reflectivity (R ~ 1%). This is mainly due to the carrier recombination 
at the surface and highly doped emitter region. The SWS cell shows lower internal quantum efficiency 
(IQE) at shorter wavelengths than the flat cell, which causes the relatively low Jsc (Figure 15.11c) [114]. 
A sub-100 nm surface-oxidized silicon nanocone forest structure is created and integrated onto the 
existing texturization microstructures on a photovoltaic device surface by a one-step high-throughput 
plasma-enhanced texturization method (Figure 15.11d). The surface of silicon can be nanotexturized 
with the simultaneous plasma-enhanced reactive ion etching and synthesis (SPERISE) process carried 
out in a plasma etcher with O2 and HBr gas mixture. The bromine ion plays the role of etching and 
texturizing while the oxygen ion plays the role of nanosynthesis and oxidizing passivation. According 
to the EMT, the gradually varying RI of the cone forest structure can dramatically reduce the reflec-
tion and thus make the silicon surface black. The nanocone forest structure dramatically reduces the 
optical reflection by 70.25% (Figure 15.11e). The I–V characteristics of the solar cell measured under 
one sun indicates that our nanotexturization method can improve the open-circuit voltage by a little, 
short-circuit current by 7.09%, fill factor by 7.0%, and conversion efficiency by 14.66%. The quantum 
efficiency is also increased by 14.31% (Figure 15.11f ). Although the reflectance of the solar cell surface 
is suppressed by the nanotexturization in the whole wavelength range from UV to IR, the EQE only 
improved in most of the visible and near-IR region. In terms of the conversion efficiency, there must 
be some competition between the increase by absorption enhancement and the decrease by surface 
recombination. That is, the absorption enhancement dominates in the visible and near-IR region, 
whereas the surface recombination dominates in other regions [115].

Despite great efforts to directly produce antireflective nanostructures on Si solar cells in various ways, 
several problems are still difficult to be considered. For so-called superstrate-type thin-film solar cells, 
where active cells are deposited onto transparent glass covered by a transparent conducting oxide, the 
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reflection at the interface between air and glass should be minimized. An alternative way to apply anti-
reflective nanostructures onto a thin-film solar cell is the fabrication of disordered submicron structures 
(d-SMSs) on the top glass substrate of superstrate-type thin-film hydrogenated amorphous silicon (a-Si:H) 
solar cells to improve the light absorption (Figure 15.12a). The d-SMSs with a tapered shape were fabri-
cated on the back side of an SnO2:F covered glass substrate by using plasma etching of thermally dewetted 
silver nanoparticles without any lithography process (Figure 15.12b). The glass substrates with the d-SMSs 
showed a very low reflectance compared to that of the glass substrates with the flat surface in a wide specu-
lar and angular range (Figure 15.12c). Thin-film a-Si:H solar cells were prepared on the opposite side of the 
d-SMS integrated glass substrates, and the devices exhibited an increased short-circuit current density (Jsc) 
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Figure 15.11 (a) SEM images of the fabricated subwavelength structure (SWS) on Si surface (left: top view, right: 
oblique view). (b) Measured reflectivity of the fabricated Si SWS at normal incidence. (c) Normalized IQE of the test 
solar cells with SWS and flat surface. (Reprinted from Sai, H., et al., Wide-angle antireflection effect of subwave-
length structures for solar cells, Jpn. J. Appl. Phys. 46 (2007): 3333–6. Copyright 2007 The Japan Society of Applied 
Physics. With permission.) (d) Cross-sectional SEM image of sub-100 nm surface-oxidized silicon nanocone forest 
structure. (e) Diffusive reflection spectra of smooth Si wafer (blue), untreated c-Si solar cell (red), and nanotexturized 
c-Si solar cell (black). (f) EQE spectra of commercial solar cell before (red curve) and after (black curve) nanotextur-
ization treatment. (Reproduced from Xu, Z., et al., Lithography-free sub-100 nm nanocone array antireflection layer 
for low-cost silicon solar cell, Appl. Opt., 51 (2012): 4430–4435. With permission of Optical Society of America.)
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by 6.84% compared to the reference cells with the flat surface without detrimental changes in the open-
circuit voltages (Voc) and the fill factor (Figure 15.12d) [116].

Besides silicon materials, antireflective nanostructures composed of many other materials were explored 
as ARCs, in spite of relatively less reports compared to those of silicon nanostructures. Antireflective 
nanostructures can be applied to various optoelectronic devices with AR surfaces constructed by nonsilicon 
antireflective nanostructures, mainly including group III–V compounds, and polymers. Group III–V semi-
conductors are widely used in optoelectronics, such as solar cells, LEDs, and lasers, because of their high 
carrier mobility and direct energy gaps. However, there are some challenges in the fabrication of broadband 
ARCs of most group III–V semiconductors, owing to their bandwidth disparity. Nanostructure arrays of 
group III–V materials with a gradient RI directly grown on the same substrates may be able to address the 
problems. Nanostructure arrays of group III–V semiconductors were usually fabricated through the vapor 
deposition growth or RIE methods, rather than solution methods owing to their intrinsic physicochemical 
properties. Antireflective polymer films were investigated intensively because of their advantageous charac-
teristics compared to inorganic materials, such as easily controllable morphology and porosity, adherence 
to a flexible substrate, and ease of large-area processing. For preparing polymer ARCs based on nanostruc-
ture arrays, the most widely used technique is template imprinting [17]. Parabola-shaped ARNSs were 
fabricated using simple process steps based on the combination of laser-interference lithography, thermal 
reflow, and subsequent pattern transfer [56]. The use of the additional thermal-reflow process makes lens-
shaped photoresist patterns, which enable pattern transfer to realize the parabola shape. Parabola-shaped 
ARNSs on a GaAs substrate fabricated by the lens-like shape-transfer method resulted in a linearly graded 
index profile. The morphology of the etched surface is smooth, and the grating patterns are uniform. 
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Figure 15.12 (a) Schematic illustration of thin-film amorphous silicon (a-Si) solar cells with d-SMSs for broadband 
AR. The inset on the left shows the fabrication procedure of the d-SMSs by using thermally dewetted silver 
nanoparticles. (b) The SEM images of (i) as a Ag thin film deposited on a glass substrate, (ii) Ag nanoparticles 
thermally dewetted at 500°C for 1 min. The fabricated d-SMSs using dry etching of Ag nanoparticles in ICP-RIE 
for (iii) 7 min and (iv) 9 min, respectively. (c) The measured reflectances of three different types of glass substrates 
(flat surface, cone shaped d-SMSs, and truncated cone-shaped d-SMSs) in the diffuse mode. (d) The J–V charac-
teristics of thin-film a-Si:H solar cells with and without d-SMSs. (Reprinted from Solar Energy Mater. Solar Cells, 
101, Song, Y.M., et al., Disordered submicron structures integrated on glass substrate for broadband absorption 
enhancement of thin-film solar cells, 73–78, Copyright 2012, with permission from Elsevier.)
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The fabricated sample shows AR properties in a broader wavelength range than that of the flat surface or 
even conventional cone-shaped ARNSs. Another approach for ARNSs is the overall dry-etching process 
using thermally dewetted silver nanoparticles. In this method, the thermal dewetting process of thin metal 
films deposited by implementing electron-beam evaporation provides nanoscale etch-mask patterns without 
lithography, enabling cost-effective fabrication. Moreover, the average nanoparticle size and separation can 
be controlled by the film thickness at a given annealing temperature. Because the fabrication process is not 
limited to certain materials, ARNSs can be fabricated on various substrates (Figure 15.13) [117].

15.5 SUMMARY
The principle of AR layers/structures was discovered a few decades ago, and a number of  manufacturing 
methods have been proposed for various materials, including silicon, germanium, III–V compound 
semiconductors, and transparent glasses/polymers. Nowadays, a promising application field of AR struc-
tures concerns optoelectronic devices/systems. In this review, we discussed several ARCs (i.e.,  single- or 
double-layer ARCs and gradient-index ARCs) and AR structures (i.e., tapered and nontapered porous 
structures and moth-eye structures). We also showed various fabrication methods of the above- 
mentioned layers/structures. In addition, optoelectronic device applications and design guidelines of 
ARCs for specific devices were discussed. We believe that our review will contribute to giving insights 
not only in developing simpler fabrication methods of ARCs on silicon or other semiconductor/dielectric 
materials but also in clear understanding of the reflection behavior of optoelectronic devices and the 
optimal geometry of ARCs.
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