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ABSTRACT: High-performance robotic vision empowers mobile and
humanoid robots to detect and identify their surrounding objects
efficiently, which enables them to cooperate with humans and assist
human activities. For error-free execution of these robots’ tasks, efficient
imaging and data processing capabilities are essential, even under diverse
and complex environments. However, conventional technologies fall
short of meeting the high-standard requirements of robotic vision under
such circumstances. Here, we discuss recent progress in artificial vision
systems with high-performance imaging and data processing capabilities
enabled by distinctive electrical, optical, and mechanical characteristics of
nanomaterials surpassing the limitations of traditional silicon technolo-
gies. In particular, we focus on nanomaterial-based electronic eyes and in-
sensor processing devices inspired by biological eyes and animal visual
recognition systems, respectively. We provide perspectives on key
nanomaterials, device components, and their functionalities, as well as explain the remaining challenges and future prospects
of the artificial vision systems.
KEYWORDS: nanomaterial, soft electronics, robotic vision, bioinspired electronic eye, in-sensor processing

INTRODUCTION
Advanced mobile and human-friendly robots, such as
unmanned aerial systems, autonomous vehicles, and humanoid
robots, have shown great potential to change human lifestyles
and bring enormous benefits to society (Figure 1a).1 These
robots autonomously navigate dynamic and complex situa-
tions, operate within hazardous and unstructured environ-
ments, and perform requested roles without human
intervention or even replace humans in various scenarios.2,3

A critical enabler for such capabilities is their ability to
perceive, interpret, and interact with their surroundings by
collecting and analyzing a vast amount of visual data.4,5 The
visual data, which include key attributes of nearby objects such
as identity, location, motion, and shape, form a solid
foundation for establishing the digital-twin system.6−8 Hence,
advanced robotics necessarily leads to an increasing demand
for advanced artificial vision systems that even outperform the
human vision system.9,10

The key performance requirements of the robotic vision
include accurate detection and efficient identification of target
objects.11,12 If diverse imaging situations under various
environments are considered, there is a pressing need for

application-specific imaging capabilities of robotic vision. For
example, to ensure comprehensive observation of the entire
region-of-interest without blind spots, it is important to
achieve panoramic imaging capability allowing clear capture
of all objects located across wide ranges of field-of-views
(FoVs) and distances (Figure 1b).13,14 In the detection of
target objects, it is necessary to acquire detailed information
with high visual clarity by focusing and magnifying the
objects.15 Nevertheless, environmental constraints and un-
certainties, such as uneven sunlight, external medium, and
changeable weather conditions, often deteriorate contrast and
clarity, and thus prohibit high-quality image acquisition
(Figure 1c).16−18 After obtaining image data, including the
target object, it is imperative to recognize it efficiently and
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Figure 1. Artificial vision system for robotic vision. (a) Schematic illustration of robotic vision used in unmanned aerial systems, autonomous
vehicles, and humanoid robots. The robotic visions capture, recognize, and interact with the nearby objects (e.g., humans, humanoid robots,
cars, and drones) located in their region-of-interest (RoI). (b,c) Schematic illustration describing the application-specific imaging, such as
panoramic and target-centric functionalities for effective object detection (b) and environmentally adaptive imaging capabilities for high-
clarity image acquisition (c). (d) Schematic illustration showing the applications of robotic visions for enabling real-time and low-power
decision-making.

Figure 2. Imaging and data processing systems. (a) Traditional imaging and data processing systems, featuring a front-end camera equipped
with a multilens system, a CMOS image sensor, and a back-end digital signal processor. The incident light is focused on the CMOS image
sensor by multiple lenses and subsequently captured. The vast amount of image data is then transferred to digital signal processors for
processing through machine learning algorithms based on artificial neural networks. (b) Human visual recognition system comprising an eye
with a single lens and a curved retina and a brain with a visual cortex. The incident light is focused on the curved retina by a single lens,
activating photoreceptor cells. Visual information is then transmitted to the visual cortex in the form of APs, and neural networks, consisting
of numerous interconnected neurons via synapses, interpret this information.
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swiftly.19,20 However, this procedure involves processing a
large amount of image data and needs significant power
consumption and processing time,21,22 which are incompatible
with situations of rapidly moving mobile robots.7 Thus,
energy-efficient and time-efficient image data processing is
crucial to enhance the decision-making capability of a mobile
robot (Figure 1d).23−25

Conventional imaging systems, however, may not be ideal
for mobile robotic visions due to their inherently bulky optical
systems and inefficient data processing architectures (Figure
2a).26,27 Traditional cameras require multilens optics to focus
visual images onto a flat complementary metal-oxide-semi-
conductor (CMOS) image sensor array, which increases
system complexity, size, and weight.28 Achieving multi-
functionality for application-specific imaging capabilities also
demands the integration of bulky and heavy optical
components into the camera module,29,30 which can
significantly reduce the mobility of the robots. Furthermore,
the primary functions of conventional cameras prioritize image
acquisition, necessitating additional high-performance process-
ors and large energy storage devices,20,31 neither of which are
suitable for the desired compactness and lightweight for mobile
robots.

Meanwhile, natural vision systems, from biological eyes to
visual recognition systems, which oftentimes show excellent
performance and simple structure by surpassing those of man-
made vision systems, offer promising insights to address the
inefficiencies of conventional devices (Figure 2b).26,32

However, to mimic and implement key structural and
functional features of the biological vision systems, it is
required to realize curved form factors33−35 and neuromorphic
characteristics36−38 in the imaging system. However, these
cannot be achieved by using traditional rigid and flat CMOS
image sensors.21,31 Thereby, mechanically deformable nano-
materials (e.g., silicon (Si) nanomembranes,34,39,40 two-dimen-
sional (2D) materials,41−44 amorphous oxide semiconduc-
tors,45,46 and nanocrystals (quantum dots (QDs)47,48 and

halide perovskites49−51)) and unconventional device technol-
ogies (e.g., flexible devices with kirigami designs,33,34,39 devices
using stretchable interconnections,52−54 and intrinsically
stretchable devices47,55) have emerged as promising technical
solutions for the development of multifunctional high-
performance bioinspired artificial vision systems.

Here, we review recent advances in the development of
nanomaterial-based artificial vision systems, with a particular
focus on bioinspired electronic eyes and in-sensor processing
devices. We first present an overview of the technology
progress in bioinspired artificial vision systems. We then
discuss more details about the electronic eyes that structurally
mimic biological eyes, such as single-chambered and
compound eyes, by describing distinct aspects of their
hardware components. Next, we explain in-sensor processing
devices that functionally mimic animal visual recognition
systems by describing how to process image signals at the
image-sensor level and maximize the processing efficiency of
the acquired image data. We also include a brief future outlook
on bioinspired artificial vision systems by presenting insights
for upcoming research directions, ideal system requirements,
and potential future applications.

ARTIFICIAL VISION SYSTEMS BASED ON
NANOMATERIALS
Nanoscale Materials and Device Design Strategies

for Artificial Vision Systems. Nanomaterials, exhibiting
unique electrical, optical, and mechanical properties due to
their nanoscale dimensions, have huge potential in developing
artificial vision systems by overcoming the constraints of
conventional device technologies based on rigid, flat, and thick
Si wafers (Figure 3a). For instance, single crystalline Si
nanomembranes with submicrometer-scale thickness can
withstand mechanical deformations without fracture while
preserving their intrinsic electrical performance and process-
ability found in bulk Si (Figure 3b, (i)).53,56 2D materials
feature electrical conductivity and photoabsorption properties

Figure 3. Nanotechnology for artificial vision systems. (a) Schematic illustration of a rigid and flat Si wafer employed in CMOS image
sensors. (b−d) Nanotechnologies, including nanomaterials (b), device designs (c), and heterostructures (d), applied in the innovation of
artificial vision systems. Various nanomaterials, such as silicon nanomembranes, 2D materials, amorphous oxide semiconductors, and
nanocrystals, have been utilized in developing artificial vision systems. In particular, their collaborative synergy with device designs (e.g.,
strain-releasing designs and kirigami designs) and integration into heterostructures facilitate the advances in artificial vision systems.
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as well as exceptional mechanical flexibility due to their
atomically thin thickness and quantum confinement effect
(Figure 3b, (ii)).57−59 Additionally, 2D materials are notable
for their low power consumption,36 enhancing their suitability
for mobile applications. Photodetectors made of amorphous
oxide thin films offer unconventional photoresponses similar to
synaptic characteristics of natural vision systems because of

their intrinsic carrier-trapping properties,45,60,61 in addition to
mechanical flexibility (Figure 3b, (iii)). Semiconducting
nanocrystals (e.g., QDs8,62,63 and halide perovskites64−67)
hold the key for developing high-performance photodetectors
owing to their high exciton generation efficiency, long carrier
lifetime, and color tunability (Figure 3b, (iv)).

Figure 4. Recent advancement of artificial vision systems. (a−d) Recently developed bioinspired electronic eyes, e.g., the electronic eyes
mimicking single-chambered eyes (a) and compound eyes (b), and in-sensor processing devices for performing contrast enhancement (c)
and MAC operations (d) of image data. The colors of boxes represent the materials used; for example, red, blue, green, purple, and black
boxes indicate the use of silicon nanomembranes, 2D materials, amorphous oxides, nanocrystals, and silicon wafers, respectively. Adapted
with permission from ref 35. Copyright 2008 Nature Publishing Group (NPG). Adapted with permission from ref 40. Copyright 2011
National Academy of Sciences (NAS). Adapted with permission from ref 39. Copyright 2021 NPG. Adapted with permission under a
Creative Commons CC License from ref 33. Copyright 2017 NPG. Adapted with permission from ref 72. Copyright 2020 NPG. Adapted
with permission from ref 47. Copyright 2022 NPG. Adapted with permission from ref 14. Copyright 2020 NPG. Adapted with permission
from ref 17. Copyright 2023 American Association for the Advanced Science (AAAS). Adapted with permission from ref 54. Copyright 2013
NPG. Adapted with permission from ref 77. Copyright 2022 NPG. Adapted with permission from ref 81. Copyright 2019 NPG. Adapted
with permission under a Creative Commons CC License from ref 31. Copyright 2020 NPG. Adapted with permission under a Creative
Commons CC License from ref 85. Copyright 2022 AAAS. Adapted with permission from ref 18. Copyright 2022 NPG. Adapted with
permission under a Creative Commons CC License from ref 29. Copyright 2023 Wiley-VCH. Adapted with permission from ref 88.
Copyright 2023 NPG. Adapted with permission from ref 10. Copyright 2020 Wiley-VCH. Adapted with permission from ref 19. Copyright
2020 NPG. Adapted with permission from ref 91. Copyright 2022 NPG. Adapted with permission from ref 30. Copyright 2022 NPG.
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These advantages of the nanomaterials can be amplified
further, when the nanoscale material strategies are combined
with unconventional device design strategies1,54 and/or
organic- or elastomer-based material strategies,68−71 enabling
the image sensors to have hemispherically curved form factors
and/or neuromorphic characteristics. For example, strain-
releasing designs (e.g., pop-up bridge structures35 and
serpentine interconnections14,40) can provide mechanical
deformability to the devices (Figure 3c, (i)). Alternatively,
kirigami designs compensate for the geometric difference
between 2D substrates and three-dimensional (3D) structures,
ensuring for the image sensors to have 3D configurations
(Figure 3c, (ii)).33,34 Meanwhile, organic dielectric layers
integrated with 2D materials for a trap-rich interface increase
the retention time of photocurrents and enable synaptic
photoresponses (Figure 3d, (i)).31,36 Intrinsically stretchable
light-absorbing nanocomposites based on QDs and elastic
block copolymers provide opportunities for artificial vision
systems with dynamically tunable focus and multispectral
imaging (Figure 3d, (ii)).47

Such properties of the engineered nanomaterials (e.g.,
mechanical deformability and synaptic property) have enabled
the development of artificial vision systems. There have been
two representative approaches toward highly efficient artificial
vision systems: the development of bioinspired electronic eyes
and the development of in-sensor processing devices. A brief
review on the technology development history for each
approach will be given in the following sections.
Recent Progress in Bioinspired Electronic Eyes. The

first approach to developing highly efficient artificial vision
systems involves emulating the structural features of animal
eyes, which exhibit unique imaging capabilities despite their
simple optical systems.26,27 This effort led to the development
of a human eye-inspired single-lens-based electronic eye,
employing curved image sensor (CurvIS) arrays using Si
nanomembranes (Figure 4a, (i)).35 The shape of the CurvIS
array matches that of the Petzval surface formed by the lens,
allowing aberration-free imaging with single-lens optics.
Furthermore, by introducing shape-tunability to the lens and
CurvIS array, the electronic eye exploited the visual
accommodation of the human eye (Figure 4a, (ii)).40 Recently,
the CurvIS array was designed to have a stretchable kirigami
structure, allowing both shape-tunability for dynamic focus
adjustment and a high fill factor for enhanced imaging
resolution (Figure 4a, (iii)).39

In addition to Si nanomembranes, other nanomaterials have
been integrated into CurvIS arrays, each offering unique
advantages that surpass the constraints of traditional Si
materials. For instance, the pixel density of CurvIS arrays
could also be increased by adopting inherently deformable
nanomaterials, such as 2D materials or perovskite nanowires
(NWs) (Figure 4a, (iv−v)).33,72 Perovskite NWs also showed
higher photoabsorption properties than Si nanomembranes.
Recently, visual accommodation and filter-free color detection
could be simultaneously achieved by employing an intrinsically
stretchable QD-nanocomposite-based CurvIS array (Figure 4a,
(vi)).47 By tuning the curvature of the array and adjusting the
size of QDs, the focal length and absorption wavelength could
be controlled.

Single-lens cameras have expanded their functionality by
providing additional imaging capabilities and/or characteristics
by mimicking features of aquatic animal eyes, such as fish and
cuttlefish eyes (Figure 4a, (vii−viii)).14,17 These functionalities

include wide FoV, deep depth-of-field (DoF), self-equalization
of nonuniform sunlight, and polarization recognition, all of
which have the potential to significantly enhance imaging
effectiveness during various robotic vision tasks under diverse
environments. Additionally, the incorporation of two distinct
electronic eyes, emulating the binocular vision of biological
systems, can provide depth information,73 facilitating stereo-
scopic robotic vision particularly beneficial for autonomous
driving applications.

Compound eyes, which consist of an array of ommatidia (or
facets) and can be found in insects or crustaceans, have also
inspired the development of unconventional electronic
eyes.74,75 One of the representative electronic compound eye
has been developed by integrating Si nanomembrane-based
CurvIS arrays with polymeric microlenses arrays (MLAs). This
electronic compound eye offered wide FoV and nearly infinite
DoF imaging capabilities (Figure 4b, (i)).54 In another
example, Floreano et al. developed a Drosophila eye-inspired
electronic compound eye by slicing a CMOS image sensor
array and mounting them on a flexible printed circuit board.76

This system could harness the benefits of compound eye
systems and CMOS technologies. Recently, an amphibious and
periscopic compound-eye-type artificial vision system was
developed by mimicking flat corneal microlenses with graded
refractive indices (RIs) of fiddler crab eyes (Figure 4b,
(ii)).77,78 The flat corneal MLA was integrated with a Si
photodiode array and then mounted on a spherical substrate,
which led to extremely wide FoV (>300 degrees) and
amphibious imaging capability.
Recent Progress in In-Sensor Processing Devices. The

second approach to developing highly efficient artificial vision
systems involves embedding data processing function into the
image sensor, aiming to perform image data processing at the
image sensing stage by mimicking functional features of
neurons and synapses in the human visual recognition system.4

This technique is referred to as in-sensor processing (or in-
sensor computing), which can decrease power consumption
and improve bandwidth by deriving preprocessed data, without
transferring vast amounts of image data over the entire time
domain to the post-processor (i.e., we can transfer only a
reduced size of data (preprocessed data) for post-process-
ing).25,79,80

To achieve in-sensor processing, synaptic photodetectors
that show unconventional photoresponses, such as time-
dependent photocurrent generation and persistent photo-
conductivity, were developed by leveraging the material and
interfacial properties of amorphous oxides and 2D materials
(Figure 4c, (i−ii)).31,81 These synaptic photodetectors enable
in-sensor contrast enhancement, which reduces undesired
background noise to improve image recognition rate.82,83

Besides, neuronal properties of the leaky integrate-and-fire
(LIF) mechanism73,84 were mimicked by integrating a synaptic
photodetector with a threshold-switching device (e.g., diode),
in which background noise was filtered out while meaningful
signals were significantly amplified (Figure 4c, (iii)).85

The synaptic photodetectors have also expanded their
functions to exploit the visual adaptation function of the
human retina (Figure 4c, (iv)).18,68,86 This device showed a
high-contrast image acquisition capability regardless of back-
ground illumination levels, demonstrating scotopic and
photopic adaptation capabilities found in the human eye. In
another example, the synaptic photodetector was employed in
chiroptical imaging for selective identification of circularly
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polarized (CP) light with a specific rotating orientation (Figure
4c, (v)).29,87 This synaptic photodetector amplified the
photocurrent generated by frequent CP lights with the target
orientation only, and thus, the selectivity could be improved.
Recently, the application of synaptic photodetectors was
expanded to dynamically moving objects for improving the
efficiency of motion perception (Figure 4c, (vi)).88 The
object’s moving direction could be inferred by utilizing the
afterimages of moving objects, generated by synaptic photo-
detectors.

Meanwhile, a crossbar array of synaptic photodetectors can
be used for the “multiply-accumulate” (MAC) operation (e.g.,
analog vector-matrix multiplications) for pattern recognition
and image filtering (Figure 4d, (i)).10 For instance, MAC
operations (In = ΣCm,n × Vm) could be executed by
programming their conductance values to represent target
matrix elements and subsequently applying the voltages
converted from the intensities of image patches to the crossbar
array.55,89,90 However, such analog processing necessitates
power-/time-consuming steps for the acquisition, transmission,
and conversion of image data.91

Therefore, alternatively, reconfigurable photodetectors, of
which responsivity can be electrostatically tuned to match the
matrix elements, were developed to perform MAC operations
within the array itself (Figure 4d, (ii−iii)).19,91 The array of
reconfigurable photodetectors generated photocurrent, a direct
output of the MAC operation between programmed
responsivities and image intensities (In = ΣRn,m × Pm).
Therefore, these reconfigurable photodetectors reduce data
processing steps, improving the time and energy efficiency in
image filtering and pattern recognition steps.19,79 Recently,
their functions expanded to broadband applications by
employing the narrow bandgap 2D materials (e.g., PdSe2 and
MoTe2).

30 These narrow bandgap 2D materials exhibited
broadband photoresponses and thus allowed simultaneous
acquisition and processing of broadband images through a
single readout operation (Figure 4d, (iv)).

DETAILS ON BIOINSPIRED ELECTRONIC EYES
Structures and Optical Components of Biological

Eyes. Recent advances in bioinspired electronic eyes have
been driven by mimicking the structures and optical

Figure 5. Bioinspired electronic eyes. (a) Schematic illustration of biological eyes: single-chambered eyes (i) and compound eyes (ii). (b)
Light-managing components employed in bioinspired electronic eyes. (c) Examples of light-managing components, including shape-tunable
lens (i), monocentric lens (ii), and graded RI MLA (iii), fabricated using polymer-based lens fabrication techniques. Adapted with
permission under a Creative Commons CC License from ref 98. Copyright 2021 Wiley-VCH. Adapted with permission from ref 14.
Copyright 2020 NPG. Adapted with permission from ref 77. Copyright 2022 NPG. (d) Light-detecting components, e.g., concavely and
convexly curved photodetector arrays, used in bioinspired electronic eyes. (e) Strategies for realizing CurvIS array through applying
unconventional device designs (e.g., strain-isolation device designs (i) and kirigami designs (ii)) and utilizing nanomaterials (e.g., 2D
materials (iii) and perovskite NWs (iv)). Adapted with permission from ref 40. Copyright 2011 NAS. Adapted with permission from ref 39.
Copyright 2021 NPG. Adapted with permission under a Creative Commons CC License from ref 33. Copyright 2017 NPG. Adapted with
permission from ref 72. Copyright 2020 NPG.
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components of biological eyes, which confer distinct optical
benefits to the artificial vision system. Biological eyes can be
categorized into two types: single-chambered eyes and
compound eyes.26 The structures and functions of animal
eyes have evolved in various ways, optimized for survival
according to their habitat environment.92

First, the single-chambered eye typically comprises a
crystalline lens, an iris, and a hemispherical retina (Figure 5a,
(i)).8 The crystalline lens focuses incident light onto the retina,
and the iris blocks stray light while adjusting the pupil size
according to ambient light levels.93 The ciliary body
dynamically alters the shape of the crystalline lens through
its contraction and extension for focus adjustment. The retina
has a concavely hemispherical structure, aligning with the
Petzval surface of the crystalline lens.33 Numerous photo-
receptor cells (e.g., rod cells and cone cells) distributed on the
retina generate electrophysiological signals in response to the
light focused by the lens, enabling visual recognition.27 A
notable structure in the retina is the fovea, a central pit with
densely packed cone cells, which is responsible for high visual
acuity (Figure 5a, (i) inset).94

Second, the compound eye consists of multiple ommatidia,
and a single ommatidium consists of a cornel lens, a crystalline
cone, screening pigment, and rhabdom (Figure 5a, (ii)).95 The
corneal lens and crystalline cone collect incoming light, and the
screening pigment filters the stray light that might interfere the
light collection in adjacent rhabdoms as noise.96 The
photoreceptor cells located in the rhabdom are activated
when exposed to incoming light. Each rhabdom functions as an
individual detector that captures only a small portion of the
overall image. This method of imaging enables quick and
sensitive motion detection.

Despite the structural and functional differences between
these two types of eyes, we cannot claim that one vision system
is superior to the other. Rather, each possesses its own
advantages and disadvantages. For instance, single-chambered
eyes excel at high visual-acuity imaging, making them ideal for
object recognition tasks.72 Consequently, these eyes inspire the
development of artificial vision systems capable of high-
resolution, aberration-free, and environmentally adaptable
imaging. On the other hand, compound eyes exhibit lower
visual acuity than single-chambered eyes, but compensate for
this limitation by offering extremely wide FoV, infinite DoF,
and a compact form factor.75 These characteristics make the
electronic compound eyes highly suitable for surveillance
applications, where extensive observation coverage for
simultaneously detecting multiple objects is crucial.

Since each type of electronic eye has a distinct structure, the
hardware design, resulting device performance, and their
function are quite different. Each advantage/disadvantage can
be carefully considered to be optimized and applied to specific
robotic applications. In the following section, we will discuss
recent advances in bioinspired electronic eyes, with a particular
focus on light-managing and light-detecting hardware.
Light-Managing Components of Bioinspired Elec-

tronic Eyes. One of the key components of bioinspired
electronic eyes is the light-managing hardware, whose designs
and functions are emulated from biological lenses. In the case
of early research for single-chamber-type electronic eyes,
commercial lenses, such as a plano-convex lens and a ball lens,
have been used.35 Despite their cost benefits, these commercial
lenses could not fully provide advantages of biological eyes. For
instance, the shape of the crystalline lens in human eyes can be

modified to adjust the focal length depending on the object
distance.97 Simple ray-tracing simulations show that a narrower
crystalline lens results in a longer focal length due to the
increased refraction angle at the lens surface (Figure 5b, (i)).
However, achieving such a shape modification is not feasible
with hard commercial lenses. Therefore, instead of commercial
lenses, shape-tunable lens systems were developed by
introducing polymer-based tunable lenses, whose shape could
be changed through microfluidic or electromagnetic actuation
(Figure 5c, (i)).98,99 These lens systems varied the focal length
by altering their shape, thus, enabling the focus adjustment for
objects at different distances.

Another example is found in the case of crystalline lenses.
Most crystalline lenses found in single-chambered eyes exhibit
a gradient in the RI profile to compensate for optical
aberrations.27 In commercial lenses with homogeneous RI
profiles, light dispersion occurs during its travel through the
lens, resulting in different focal lengths for different wave-
lengths (Figure 5b, (ii) top). This is known as chromatic
aberration (CA), which is often described as color distortion.
But, if the gradient RI profile can be used, it can effectively
compensate for the dispersion and significantly minimize CA
(Figure 5b, (ii) bottom). Therefore, Kim et al. demonstrated a
monocentric lens featuring graded RIs by assembling half-ball
lenses and shell lenses with different RIs (Figure 5c, (ii)).14

This monocentric lens proved to be highly effective in
minimizing chromatic aberration. Furthermore, its spherically
symmetric shape provided an additional advantage, enabling
almost hemispherical FoV of up to 160°, much larger than
conventional ellipsoidal lens systems.

In addition to the lens designs, the pupil shape in single-
chambered biological eyes (e.g., cuttlefish eye) has been
emulated to develop noise-robust robotic vision systems. For
instance, the cuttlefish-inspired electronic eye has a W-shaped
aperture mounted on a spherical ball lens, capable of correcting
the uneven light distribution (Figure 5b, (iii)).17 This situation
can be made during the daytime, when intense sunlight comes
from above. In that case, the uneven light can be self-equalized,
as strong light coming from the top can be blocked by the
aperture. This function is beneficial for autonomous driving
under strong sunlight during the daytime.

For electronic eyes inspired by compound eyes, MLAs were
developed, which were engineered to mimic the corneal lens
and crystalline cone of compound eyes. Such MLAs were
mounted onto the CurvIS arrays with the convex curvature,
forming a focal plane on the CurvIS array by refracting
incident light at their curved top surface (Figure 5b, (iv)).54

This enables imaging without the need for bulky lens elements,
required in aforementioned single-lens-based electronic eyes,
leading to a small-form-factor while simultaneously achieving
an extremely wide FoV (>160 degrees).

Initial versions of MLAs had a homogeneous RI profile to
streamline the manufacturing process. These MLAs lose
focusing capabilities if the external medium is changed
between air and water due to RI changes (Figure 5b, (iv)),
making them less suitable for amphibious robotic vision. To
overcome this challenge, researchers developed a graded RI
MLA with a flat top surface, inspired by the fiddler crab’s eye
that has flat corneal lenses and gradual RI layers.77 The graded
RI MLA with a flat top surface was fabricated by using a
multistamp-and-curing process (Figure 5b, (v)). Each micro-
lens consisted of four-layered optical adhesives with different
RIs of 1.35, 1.37, 1.39, and 1.42, which were stacked in a
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curvilinear manner to create gradually changing RI layers
(Figure 5c, (iii)). In this MLA, the flat top surface neutralized
abrupt changes of focusing power at the interface between
MLA and external medium (e.g., air or water), and the
curvilinearly stacked polymeric layers with the gradient RI
profile refracted the incident light to form a focal spot.
Therefore, the electronic compound eye could maintain a
consistent focal length in both aerial and underwater
environments.
Light-Detecting Components of Bioinspired Elec-

tronic Eyes. Despite the significant advances in the light-
managing components, their optical advantages remain
underutilized until they are integrated with CurvIS arrays. In
the case of single-lens-based electronic eyes, their imaging
performance is constrained to a narrow FoV when employing
the flat image sensor.28 As the FoV broadens, a mismatch
between the flat image sensor and the curved focal plane

increases, resulting in an optical aberration known as Petzval
field curvature. To resolve this challenge, a concave curvature,
similar to the concavity of animal’s retina, must be introduced
to the photodiode array (Figure 5d, (i)). This concave
curvature in the photodiode array enables alignment with the
focal plane formed by the lens, ensuring an aberration-free
imaging performance across wide FoVs.

In the electronic compound eye, it is crucial to position an
individual photodiode at the focal point of each microlens.
Thus, MLAs should be closely mounted onto the photodiodes,
considering the short focal length of microlenses.96 However,
placing the MLA on a flat image sensor array severely restricts
the FoV, preventing full exploitation of the optical benefits
offered by compound eyes, such as extremely wide FoV.
Therefore, MLAs should be integrated onto a CurvIS array
with a convex configuration, resembling the convex hexagonal
arrays found in natural compound eyes (Figure 5d, (ii)).

Figure 6. In-sensor processing devices. (a) Schematic diagram showing the imaging and data processing procedure in conventional
architectures composed of front-end cameras and back-end processors (i) and in-sensor processing architectures composed of in-sensor
processing devices (ii). (b) Representative examples of ISPs, such as contrast enhancement (i), edge detection (ii), and moving object
tracking (iii), for improving the efficiency and accuracy of robotic vision tasks. (c) Photoresponses of synaptic photodetectors responding
differently to frequent/strong signals and infrequent/weak noises. Adapted with permission under a Creative Commons CC License from ref
85. Copyright 2022 AAAS. (d) Physical phenomena observed in nanoscale materials and their heterostructures, including amorphous oxides
(i), 2D materials (ii), nanocrystals (iii), and organic materials (iv), employed for developing synaptic photodetectors. (e) Device structure
(i) and array configuration (ii) for constructing the reconfigurable photodetector arrays capable of executing MAC operations. (f)
Application examples of analog MAC operations for robotic vision tasks, such as image filtering (i) and pattern classification (ii), achieved by
the arrays of reconfigurable photodetectors. Adapted with permission from ref 91. Copyright 2022 NPG. Adapted with permission from ref
19. Copyright 2020 NPG.
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In the early research reports, CurvIS arrays employed Si
nanomembranes compatible with standard semiconductor
manufacturing techniques such as CMOS fabrication pro-
cesses.35,40 These Si photodiode arrays were initially fabricated
on a flat wafer and subsequently transferred onto concave or
convex substrates for CurvIS arrays with concave or convex
configurations.100 Despite their submicrometer thickness,
however, Si nanomembranes exhibit inherent brittleness, and
thus strain-releasing device designs are necessary. For example,
Si photodetector arrays were patterned into specific designs
(e.g., island-bridge configuration) to minimize induced strain
on the Si nanomembrane in CurvIS arrays by releasing most of
the strain at the deformable metal interconnections (e.g.,
serpentine-shape interconnection; Figure 5e, (i)).

However, these strain-isolation device designs lead to low fill
factors of photodetectors (∼30%) because substantial space of
the array is occupied by the specially designed interconnec-
tion.33 Kirigami techniques, facilitating deformation of a 2D
sheet into a 3D structure by adding cuts, can be a potential
solution to achieve both a high fill factor and 3D deformation.
By employing a hinge design in the photodetector array, for
example, a CurvIS array which shows a fill factor of ∼78% and
biaxial stretchability could be developed (Figure 5e, (ii)).39

This CurvIS array allowed both high-resolution imaging (32 ×
32 pixels) and dynamic focus adjustment by being integrated
with a shape-tunable lens system.

Recently, nanomaterials, such as 2D materials, perovskite
NWs, and QD-based nanocomposites, have been used for
CurvIS arrays because of their inherent deformability and
unique material properties originating from nanoscale
dimensions. These nanomaterial-based devices can be trans-
ferred from a manufacturing wafer to a curved substrate
without mechanical failure, despite the lack of strain-isolation
device designs, thus high pixel density can be achieved.101 For
example, a CurvIS array based on MoS2-graphene hetero-
structure showed high pixel density because space-occupying
device designs were unnecessary (Figure 5e, (iii)).33 Another
CurvIS array utilizing vertically grown perovskite NWs
featured high NW density (∼4.6 × 108 cm−2 with a pitch of
500 nm) that surpasses the photoreceptor density of the
human retina (∼107 cm−2 with a pitch of 3 μm) (Figure 5e,
(iv)).72 By utilizing nanocomposites of QDs, semiconducting
polymers, and elastomeric matrix, an intrinsically stretchable
image sensor array, facilitating the dynamic deformation of
CurvIS array to align with the Petzval surface formed by the
shape-tunable lens, can be fabricated.47 Moreover, these
nanomaterials exhibit high photoabsorption coefficients and
long carrier diffusion lengths, enabling the fabrication of high-
performance electronic eyes.

DETAILS ON IN-SENSOR PROCESSING DEVICES
Architecture of In-Sensor Processing Devices. In

addition to image acquisition, energy- and time-efficient
processing of the image data are crucial for successful robotic
vision tasks. However, traditional image processing architec-
tures, which rely on frame-based image acquisition, transfer of
a large amount of image data, and subsequent data processing,
have limitations in terms of power consumption and data
latency.102,103 In these architectures, a front-end camera
captures individual image frames over a time period, by
which a large amount of data should be accumulated in
consideration of entire time domain (Figure 6a, (i)).31 The
data should be transferred to and processed by back-end

processors for image analysis and recognition. However, these
massive data transfer and processing cause latency and
computational overhead, which are burdensome steps in the
overall workflow of the robotic vision tasks.104

Image signal processing (ISP) techniques have improved
data transfer and processing performances by preprocessing
image data before it reaches to the post-processing stage.20

One notable ISP technique is to emphasize key features of
target objects through contrast enhancement (Figure 6b, (i)).
This enables artificial intelligence to recognize a target object
with high accuracy. This is particularly valuable when the initial
image is noisy or blurred, which machine learning algorithms
cannot recognize accurately without further processing.85

Another ISP technique, e.g., edge detection, enhances data
transfer efficiency by removing background information that
may be unnecessary for object detection but occupies a large
part of data storage (Figure 6b, (ii)).79 In many cases,
detecting the outlines of objects is sufficient for object
detection.5 In a more extreme case, tracking moving objects
only, rather than capturing an entire scene that includes static
backgrounds, can maximize the efficiency (Figure 6b, (iii)), as
far as simplified image data is enough for the object tracking
purpose.12

However, traditional architectures rely on back-end
processors for ISP, in which inefficiency associated with the
capture and transfer of massive data is accompanied. In this
regard, in-sensor processing techniques hold a huge potential
to significantly improve the overall efficiency by executing ISP
at the image-sensor level (Figure 6a, (ii)).21 However,
conventional CMOS image sensors and readout integrated
circuits have not been designed to support in-sensor
processing. To implement in-sensor processing, data process-
ing functions should be embedded into the image-sensing
platform, and thus, unconventional photodetectors whose
characteristics and configurations are different from CMOS
image sensors are needed. In the following section, we will
discuss recently highlighted in-sensor processing devices (e.g.,
synaptic photodetectors and reconfigurable photodetectors)
and their applications to machine vision.
Synaptic Photodetector for In-Sensor Contrast

Enhancement. The concepts of synaptic photodetectors
draw inspiration from the neural signal transmission principle
in the human visual recognition system, where action
potentials (APs) propagate from presynaptic neurons to
postsynaptic neurons via their synapse. In the synapse, the
arrival of presynaptic APs triggers the release of neuro-
transmitters (e.g., glutamate), which in turn generates a
postsynaptic potential through binding to receptors on the
postsynaptic neuron. Subsequently, postsynaptic potentials are
spatiotemporally accumulated, and an AP is fired when the
summed potential exceeds the threshold.105

Synaptic photodetectors aim to integrate an ISP function by
replicating such synaptic signal transmission characteristics.45

To achieve this goal, photodetectors with slow photodynamic
features (e.g., time-dependent photocurrent generation and
persistent photoconductivity) were developed.31,81,106 Their
photoresponses resemble postsynaptic potentials in human
synapses, i.e., accumulation of photocurrent in response to
frequent and strong optical inputs and dissipation of
photocurrent in response to infrequent and weak optical
inputs (Figure 6c, (i)). As meaningful optical signals are
usually frequent/repetitive and strong, while background noise
tends to be infrequent/random and weak, these characteristics
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can be exploited to reduce background noise and amplify
object signal, which leads to contrast enhancement of the
image.31

Even with the noise-reduction technique, however, some
residual background noise may persist, acting as an artifact that
hinders accurate image recognition. To address this challenge,
an advanced synaptic photodetector with threshold switching
characteristics, more similar to a human synapse with an all-or-
none type AP firing mechanism than the conventional synaptic
photodetector, was developed.85 In this device, a synaptic
photodetector is integrated with a rectifying diode, and thus,
an electrical output is generated only when it exceeds a turn-on
threshold of the diode (Figure 6c, (ii)). When exposed to
noisy inputs, this device generated negligible photocurrent. In
contrast, it generated exponentially amplified photocurrent for
meaningful input signals. The resulting noise-removed image
could be accurately recognized by the machine learning
algorithm through a single readout operation. The synaptic
photodetector can also be used for tracking a moving object.88

If the object continues to move, afterimages are produced due
to the persistent photoconductivity. Furthermore, the new
location of the moving object appears brighter in the images,
including afterimages. Leveraging the brightness difference
among these images enables us to infer the object’s movement
direction.

However, achieving such features using conventional Si
photodiodes with fast photodynamics (i.e., rapid photocurrent
generation and decaying characteristics) is challenging, even
though defects are introduced.107 In this regard, nanomaterials
and their heterostructures have emerged as promising material
candidates because their physical phenomena inducing photo-
current generation and relaxation gradually occur over a
relatively long period of time due to the large activation energy.
These physical phenomena enable nanomaterial-based photo-
detectors to exhibit synaptic photoresponses. In the case of
amorphous oxide semiconductors (e.g., amorphous indium
gallium zinc oxide (a-IGZO)), for instance, oxygen vacancies
need to undergo ionization and deionization to generate and
relax photocurrent, which leads to slow photodynamics (Figure
6d, (i)).45,81 Another example that shows the slow photo-
dynamics is the phototransistor with interfacial hole trapping/
detrapping, which occurs at the interface of 2D materials and
the organic dielectric layer (Figure 6d, (ii)).18,31 Also,
heterointerfacial charge transfer leads to time-dependent
photocurrent generation and decaying characteristics. In
nanocrystal-based heterostructures, for example, photogener-
ated electrons in nanocrystals (e.g., CdSe QDs) are transferred
to semiconducting channels (e.g., a-IGZO channel) to
generate photocurrent (Figure 6d, (iii)).62,104 A similar
heterointerfacial charge transfer mechanism is also found in
the heterostructure of amorphous oxide semiconductors and
organic semiconductor materials (Figure 6d, (iv)).29

Therefore, nanomaterials have been extensively studied to
develop synaptic photodetectors as an alternative to single-
crystalline Si. There will be numerous future endeavors
exploring a wider array of nanomaterials and their hetero-
structures for advancing synaptic photodetectors.
Reconfigurable Photodetectors for the Multiply-

Accumulate Operation. The MAC operation, commonly
referred to as vector-matrix multiplication, is a popular
computation scheme in machine vision applications, deriving
output vectors through convolutional computations between
matrices and vectors.89 For example, an edge of the target

object can be detected by applying the MAC operation
between a 3 × 3 sobelx kernel (i.e., [(−1, −2, −1), (0, 0, 0), (1,
2, 1)]) and a 3 × 3 image patch.60 Mapping the outputs
obtained by sliding the original image patches and repeating
the MAC operations results in an edge-extracted image.
Machine learning also relies on the MAC operation, in terms of
multiplication between a weight matrix and an input vector.57

Traditionally, these MAC operations were carried out
through software-based calculation. However, this requires
substantial computing resources and power consumption,
which is problematic in mobile robotics applications for
which low-power, real-time processing is crucial. Therefore,
research efforts have been focused on executing the MAC
operation in an analogue manner, bypassing traditional power-
consuming computations.

For instance, the memristor crossbar array can produce
current outputs that represent the outcome of the MAC
operation between a conductance matrix and an input voltage
vector (In = ΣCn,m × Vm).

55,90 In that case, the conductance of
individual memristors is reconfigured to reflect the target
filtering kernel or weight matrix, and the input image’s
intensities are converted into voltage signals and applied to
the crossbar array. Similarly, the crossbar array comprised of
synaptic photodetectors, whose conductance can be modulated
through optical and/or electrical stimuli, was proposed for
analog MAC operations.10,108 However, this conductance-
based method may not be ideal, because it necessitates
additional signal processing steps such as recording, trans-
mission, and signal conversion of image data before they are
fed into the crossbar array.

The in-sensor processing aims to process image data at the
image-sensing level, such as execution of the MAC operation in
response to light illumination without additional signal
processing steps. To achieve this goal, two fundamental factors
are necessary. First, there should be well-defined physical
parameters that can convert light intensities to electrical
outputs through vector-matrix multiplication. For instance, the
photocurrent is expressed as the product of photodetector’s
responsivity and incident light intensity (Iph = R × P). Second,
these physical parameters, especially responsivity in this
context, should be reconfigurable to represent elements in
the desired filtering kernels or weight matrices. With these
attributes, the MAC operation can be achieved in response to
light illumination by programming responsivity matrices of
individual pixels and summing the resulting photocurrents (I =
ΣRn,m × Pm).

To realize such a reconfigurable photodetector, the split-gate
device structure was proposed, offering the capability to
program the responsivity of each pixel through electrostatic
doping (Figure 6e, (i)).19,91 In this device structure, the charge
carrier profile within the semiconducting channel undergoes
significant changes when an electric field is applied to the
channel by the gate bias (Figure 6e, (i) gray dashed box).
Notably, nanomaterials have gained significant attention as
channel materials because of their large responsiveness to the
applied electric field. For instance, 2D materials are highly
susceptible to nearby electrical fields owing to their atomically
thin nature.19,30 Similarly, the intrinsic Si nanomembrane
could also be used for the channel material.91

The split-gate devices, incorporating either 2D materials or
Si nanomembranes, can be programmed to represent target
responsivities corresponding to filtering kernels or weight
matrix elements. Then, the source/drain electrodes of these
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devices were electrically interconnected, forming an array
primed for conducting analogue MAC operations in response
to patterned light (or image) illuminations (Figure 6e, (ii)).
For instance, the responsivities of 3 × 3 device arrays were
programmed with a sobelx kernel, and an output current, which
is a summation of photocurrent generated from every pixel,
was measured (Iph = ΣIn). This output current indicates the
outcome of the multiplication and accumulation of the
responsivity matrix and incident image patch (Iph = ΣRn ×
Pn), which can be employed to construct an edge-detected
image (Figure 6f, (i)).91 Furthermore, classification of three
different patterns could be achieved by using three subpixel
arrays of reconfigurable photodetectors. The responsivity of
each photodetector was optimized through back-propagation
algorithms, and input optical patterns were inferred by
comparing the output current from each subpixel array (Figure
6f, (ii)).19

CONCLUSION AND FUTURE PROSPECTS
We discussed recent advancements in artificial vision systems
based on nanomaterials for robotic applications. The
bioinspired electronic eyes have presented unique image
acquisition performances due to their unconventional
structures emulating biological eyes as well as the incorpo-
ration of nanomaterials with inherent deformability. The in-
sensor processing devices have provided efficient hardware-
centric approaches for ISPs, such as contrast enhancement and
image filtering, which reduce data redundancy and lower
power consumption of the robotic vision systems. Hence,
artificial vision systems based on nanomaterials are expected to
contribute to the advancement of mobile robotic visions that
require superior imaging and recognition efficiency compared
to traditional CMOS technologies. Despite these advances,
however, there are still remaining challenges. In the final
section, these challenges are briefly discussed, particularly
focusing on the improvement of imaging resolution and
integration of multiple functions.
Resolution Enhancement of the Artificial Vision

System. Despite recent efforts to enhance the pixel density
of the CurvIS array, the resolution of artificial vision systems is

significantly lower than that of state-of-the-art CMOS image
sensors. The low imaging resolution can constrain the practical
use of artificial vision systems in robotic vision tasks.
Therefore, a pressing need exists to increase the pixel density
(Figure 7, (i)). To achieve this goal, the dimension of the
individual pixel, which encompasses the active photodiode area
and its spatial separation area, should be dramatically reduced.
This size reduction of the pixel, however, cannot be achieved
using strain-releasing device designs (e.g., strain-releasing
serpentine structures). These designs necessitate substantial
area to be occupied by spaces for interconnections and thus
limit the fill factor.33,39

The ideal solution involves the development of an
intrinsically stretchable image sensor array that can be
mounted on a curved substrate with almost 100% fill factor,
while potential risks of device fracture can be avoided.
Nanomaterials exhibiting inherent flexibility and their
composites with elastomeric materials can be promising
material candidates for such image sensors. However, their
practical implementation in a high-resolution array format is
still a daunting goal because of the lack of facile fabrication
methods and low device uniformity. Therefore, further
advances in material preparation and fabrication techniques
are imperative. Besides, the shrinkage of the design rule, while
nanomaterials and their composites are employed, may cause
crosstalk issues among neighboring pixels. Therefore, better
multiplexing technologies are needed. This means that high-
performance and intrinsically stretchable transistor technolo-
gies should be developed.109

Integration of Multiple Functions into a Single
Device. Robotic vision tasks routinely encounter various
environmental constraints and uncertainties, each demanding
specialized imaging and processing capabilities tailored to
specific applications. However, employing multiple, discrete
imaging and processing devices to meet those diverse
requirements is inefficient as well as makes the entire system
complicated and bulky.21 Instead, the key lies in integrating
multiple functions into a single-integrated system, enhancing
the efficiency, versatility, and mobility of robotic vision systems
(Figure 7, (ii)).

Figure 7. Technical roadmap for future artificial vision systems. Technical challenges for advancing artificial vision systems for robotic
application. First, pixel density should be enhanced to levels comparable to CMOS image sensor arrays, necessitating miniaturization of the
pixel dimension and adopting active-matrix array architectures. Second, the integration of functionalities between bioinspired electronic eyes
and in-sensor processing devices is imperative. Moreover, customizing their functionalities to cater to specific robotic scenarios enables the
development of versatile and multifunctional robotic vision systems.
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For this goal, tunable hardware components can be used,
rendering them adaptable to various environments and
applications. For instance, a wide FoV is beneficial for wide-
range surveillance and target object detection. Consequently, a
lens may have a spherical core−shell structure to support wide
observation FoV.14 However, once a target is detected, the
system operation type can be changed to a zoom-in mode for
detailed analyses, ensuring accurate identification. In that case,
the optical system parameters should be adjustable for the
zooming capability. In the case when uneven light intensity
(e.g., sunlight) increases light scattering and thus hinders
effective image acquisition, it becomes necessary to adapt the
aperture shape and size for self-equalization.17 These dynamic
adjustments of imaging hardware components necessitate
material and mechanical engineering. Other sensing compo-
nents to improve vision performance can also be considered to
be combined with imaging devices. Such sensors (temperature,
humidity, air pollution quality, etc.) may be used to adjust the
detailed parameters of the vision system. Certainly, all of these
engineered components should be monolithically integrated
within a single robotic vision system.

In-sensor processing functions should also be adjustable,
enabling customization based on specific objectives. This
adaptability ensures that in-sensor processing is not restricted
to a predefined task but can handle various ISP operations,
according to specific needs. For example, if we consider a
general surveillance scenario requiring the detection and
identification of moving objects, the detection of moving
objects can be efficiently achieved by edge detection, by
reducing data redundancy and handling fewer data. However,
once a target is specified, highly accurate identification
becomes essential, and thus, the in-sensor processing function
should prioritize acquiring detailed image information for
enhanced contrast. This adaptability of the vision system can
be attained when the physical parameters (e.g., responsivity) of
individual in-sensor processing devices are programmable to
the desired ISP modes upon demand.
Future Prospects. Robotic vision tasks encompass multi-

ple stages, such as image acquisition and ISP to include data
analysis and decision making. These discrete stages, often
handled by separate hardware components, result in substantial
data flow between them and thus limit the efficiency of the
robotic vision. However, it is crucial to note that the ultimate
goal of robotic vision is the efficient acquisition and processing
of image data for targeted applications. Considering this goal,
we had better execute all those processes in a single-integrated
device and one streamlined operation.110 This necessitates the
integration of all imaging and processing functions into one
artificial vision system. Then, artificial vision systems can
achieve high-quality imaging with a CurvIS array paired with
simplified and miniaturized optical components and autono-
mously perform ISP with in-sensor processing capabilities.
Ideally, back-end processors responsible for post-data process-
ing, such as machine learning-based object inference, can also
be monolithically integrated for low-power and high-speed
robotic vision applications.25 Therefore, the entire robotic
vision process, from image acquisition to data analysis, can be
performed in a unified and efficient manner, significantly
enhancing the overall efficiency. While technical challenges
persist, recent advancements in bioinspired electronic eyes and
in-sensor processing devices are promising for high-perform-
ance robotic vision systems toward advanced mobile and
human-friendly robotics.
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